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Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides
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Light manipulations such as spin-direction locking propagation, robust transport, quantum teleportation, and
reconfigurable electromagnetic pathways have been investigated at the boundaries of photonic systems. Recently
by breaking Dirac cones in time-reversal-invariant photonic crystals, valley-pseudospin coupled edge states have
been employed to realize selective propagation of light. Here, we realize the controllable propagation of pseudospin
states in three-dimensional bulk metacrystal waveguides by valley degree of freedom. Reconfigurable photonic
valley Hall effect is achieved for frequency-direction locking propagation in such a way that the propagation
path can be tunable precisely by scanning the working frequency. A complete transition diagram is illustrated on
the valley-dependent pseudospin states of Dirac-cone-absent photonic bands. A photonic blocker is proposed by
cascading two inversion asymmetric metacrystal waveguides in which pseudospin-direction locking propagation
exists. In addition, valley-dependent pseudospin bands are also discussed in a realistic metamaterials sample.
These results show an alternative way toward molding the pseudospin flow in photonic systems.

DOI: 10.1103/PhysRevB.97.184201

I. INTRODUCTION

By taking advantage of the various degrees of freedom such
as frequency [1,2], phase [3,4], polarization [5], and momen-
tum [6], light flow control is of growing scientific and tech-
nological importance. Recently, by considering the spin-orbit
interaction in time-reversal-invariant photonic systems, the
propagation of spin states at photonic boundaries has attracted
much attention. The spin-filtered effect and unidirectional
transmission of spin states have been demonstrated in different
photonic systems such as metasurfaces [7,8], metallic slit [9],
photonic crystal waveguides [10,11], and chiral nanophotonic
interfaces [12,13]. In the past few years, topology has also been
verified as a flexible degree of freedom (DOF) to mold the
flow of light, and has provided great potential opportunities in
photonics [14–18]. Protected by the bulk-edge correspondence
[19], two counterpropagating gapless pseudospin-polarized
edge states are found at the interfaces of two topologically
distinct time-reversal systems [20–22]. By employing such
exotic edge states, robust transport and even the reconfigurable
detouring of pseudospin states have been demonstrated at
photonic boundaries or domain walls [23–26]. It seems that
a well-defined photonic boundary is necessary for the obser-
vation of photonic pseudospin propagation. Is it possible to
control pseudospin flow in a bulk medium without a photonic
boundary?

On the other hand, the valley, which labels the energy
extrema of the band structure at momentum space, has been
employed to achieve a number of intriguing phenomena such
as valley-selective Hall transport and circular dichroism in
two-dimensional layered materials [27–30]. Regarding the
similarity between electronic systems and classical systems,
photonic and sonic counterparts of valley Hall topological
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insulators have been investigated very recently [31–39]. Valley
chirality locked beam splitting and topological transport of
edge states were proposed and observed. Although most of
the reported valley-controlled behaviors are found in systems
where Dirac cones are gapped, the two inequivalent but time-
reversal K′ and K valleys are ubiquitous in periodic triangular
and honeycomb lattices, no matter whether Dirac cones are
present or not. It suggests that valley photonics and valley
acoustics can not only be explored in systems possessing
gapped Dirac cones, but also can be extended to general
triangular and honeycomb systems.

In this work, we show valley-controlled propagation of
pseudospin states in three-dimensional (3D) bulk metacrystal
waveguides without Dirac cones. By breaking the inversion
symmetry, we find valley-dependent pseudospin bands and the
resultant pseudospin gap due to valley-pseudospin interaction.
The variation of the pseudospin bands is shown in the plane of
two constitutive parameters of metacrystal waveguides. Recon-
figurable photonic valley Hall effect is then demonstrated by
shifting the working frequency. Pseudospin-direction locking
propagation of pseudospin states is also illustrated, confirming
that the pseudospin-filtered feature can be achieved by using
the valley DOF. Furthermore, a prototype of a photonic blocker
is proposed by cascading two metacrystal waveguides. In
addition, valley-dependent pseudospin-split bulk bands are
also discussed in a realistic sample constructed by nonresonant
and electromagnetic-dual metamaterials between two metal
plates. These results show a way toward molding the flow of
pseudospin states in photonic structures by using a valley as
an alternative binary DOF.

II. PSEUDOSPIN STATES IN METACRYSTAL WAVEGUIDE

Figure 1(a) shows the schematic of a metacrystal waveguide
consisting of one metacrystal and two parallel metal plates
at z = 0 and z = d0 (yellow plane). The unit cell of the
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FIG. 1. Valley-dependent pseudospin states in the metacrystal waveguide. (a) Schematic of the inversion asymmetric metacrystal waveguide
which is constructed by one electromagnetic-dual metacrystal and two parallel metal plates. The top plate is shifted to reveal the metacrystal
inside. The unit cell of the metacrystal has a height of d0 along the z direction and a hexagonal cross section with the size of a0 in the xy

plane (framed in pink). Each cell is composed of three hexagonal rods which are, respectively, indexed by 1 (green), 2 (cyan), and 3 (gray).
(b) Valley-dependent pseudospin bands of the metacrystal waveguide whose feature lengths are a0 = 30 mm and d0 = 48 mm (see the unit cell
in the left inset). Three hexagonal rods are set with ρ = 13 and μr1 = diag{0.455, 0.455, 0.25} [green rod]; μr2 = diag{0.67,0.67,0.25} [cyan
rod]; μr3 = diag{0.39, 0.39, 0.44} [gray rod]. Pseudospin-up and pseudospin-down states are marked in blue and red, respectively. Around the
frequency of 3 GHz, pseudospin-down states are prohibited near the K′ valley, resulting in a pseudospin-down gap. Similarly, pseudospin-up
states are not allowed near the K valley, and this leads to a pseudospin-up gap. The Brillouin zone with high-symmetry K′ and K points is
shown in the middle inset. (c) Eigenfields of the four lowest pseudospin states at the K point. For each state, the (Ez, Hz) and phase difference
(PD) between Ez and Hz at z = 3d0/4 are shown. According to the C3-rotation eigenvalues of Ez (or Hz) fields, the first and second (third and
fourth) states belong to A (E) irreducible representation. Inferring from the phase relation between Ez and Hz (or the resultant PD), the first and
fourth states are pseudospin-up polarized while the second and third states are pseudospin-down polarized. As a result, these four states can be
respectively labeled as A↑, A↓, E↑, and E↓ states according to the group representations and pseudospin notations [labeling on the eigenfields
in (c) and outlined by dashed circles along the band structure in (b)]. Note that the A↓ and E↓ states are accidentally degenerate at the K point
by carefully choosing μr1,xx = 0.455 [see details in Fig. 2(b)]. This accidental degeneration is different from the structural degeneration of the
Dirac point at which two E states are considered.

metacrystal (pink frame) has a hexagonal cross section with
a size of a0 and a height of d0. Each cell is composed of three
hexagonal rods which are indexed by 1 (green), 2 (cyan), and 3

(gray), respectively. For such a metacrystal waveguide, we have
the following electromagnetic field solution for the first-order
guided modes:
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where ex , ey , ez, hx , hy , and hz are functions of (x, y) but the z direction is invariant between z = 0 and z = d0. With the definitions

of ⇀
e = (ex,ey,ez)T and

⇀

h = (hx,hy,hz)T , the Maxwell equations can be rewritten in a compact form, yielding

∇ × ⇀
e = iω[μ0μr

⇀

h + ξe
⇀
e], ∇ × ⇀

h = −iω[ε0εr
⇀
e + ξe
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h], (2)

where ξe is an effective bianisotropic tensor with ξe,xy = ξ ∗
e,yx = iπ/ωd0. Hence, the 3D metacrystal waveguide can be viewed

as a two-dimensional (2D) metacrystal with the pseudofields of (⇀
e,

⇀

h) and an effective bianisotropic coefficient ξe [23]. Note,

however, that compared with the electromagnetic fields of (
⇀

E,
⇀

H ) extending infinitely along the z direction in 2D metacrystals

(e.g., Ref. [40]), the pseudofields of (⇀
e,

⇀

h) are confined between z = 0 and z = d0 in 3D metacrystal waveguides. Note also that
due to the strong coupling of waveguide modes, the effective bianisotropic coefficient can be large by reducing the height of the
waveguide.

In order to construct decoupled pseudospin states, all hexagonal rods are assumed to be uniaxial (i.e., μr,xx = μr,yy) and
electromagnetic dual (i.e., εr = ρμr with ρ being a constant). The electromagnetic-dual symmetry guarantees the occurrence of

184201-2



VALLEY-CONTROLLED PROPAGATION OF PSEUDOSPIN … PHYSICAL REVIEW B 97, 184201 (2018)

photonic Kramer degeneracy [20,40], resulting in the decomposition of the Maxwell equations into two decoupled pseudospins,
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h. Consequently, for the pseudospin-up states (↑) with nonzero (p−
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y , p+
z ), the in-plane components

(ex,hx) or (ey,hy) are out of phase while the out-of-plane components (ez, hz) are in phase [20,41]. On the contrary, for the
pseudospin-down states (↓) with nonzero (p+

x , p+
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z ), (ex , hx) or (ey , hy) are in phase while (ez, hz) are out of phase. Although
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It implies that the pseudofields (⇀
e,

⇀

h) are linearly propor-

tional to (
⇀

E,
⇀

H ) at z = 3d0/4 in the metacrystal waveguide.
As a result, the pseudospin of each state can also be defined
by the phase relationship between (Ex,Hx), (Ey,Hy), or (Ez,
Hz) at z = 3d0/4. Although the phase relationship between
either in-plane or out-of-plane components can be used for
pseudospin classification, we focus on the out-of-plane com-
ponent throughout this paper. That is to say, the pseudospin-up
state has in-phase (Ez, Hz) while the pseudospin-down state
has out-of-phase (Ez, Hz).

To illustrate the pseudospin classification, we consider
a conceptual 3D metacrystal waveguide. The left inset of
Fig. 1(b) shows the unit cell of the metacrystal which has
a hexagonal cross section with a size of a0 = 30 mm and
a height of d0 = 48 mm. In addition, three hexagonal rods
are set with ρ = 13 and μr1 = diag{0.455, 0.455, 0.25};
μr2 = diag{0.67, 0.67, 0.25}; μr3 = diag{0.39, 0.39, 0.44}
[see more in Sec. III E for the experimental design]. As a
result, the electromagnetic-dual symmetry is fulfilled and the
pseudospin states are well defined. Figure 1(b) shows the band
structure of this inversion-symmetry-breaking metacrystal
waveguide. As examples of pseudospin classification, we plot
out the eigenfields of four lowest photonic states at the K point
in Fig. 1(c), including the Ez, Hz, and their phase difference
[(PD), i.e., arg(Ez)–arg(Hz)] at z = 3d0/4. Obviously, the first
and fourth lowest states are pseudospin up, as the Ez and Hz

are in phase and the resultant PD is 0, while the second and
third lowest states are pseudospin down as the PD is π . Thus
for the band structure in Fig. 1(b), one can classify all states
by marking pseudospin-up (pseudospin-down) states in blue
(red). The photonic bands are doubly degenerate along the
�M direction due to mirror symmetry protection. In contrast,
the photonic bands with different pseudospin near K′ and K
valleys split in the frequency level. Around the frequency of
3 GHz, the pseudospin-down states are prohibited near the K′
valley while the pseudospin-up states are prohibited near the
K valley. It leads to a valley-dependent pseudospin gap, i.e.,
frequency range in which pseudospin-up (and equivalently
pseudospin-down) states are allowed near one valley but

prohibited near the other valley. When such pseudospin gap is
frequency isolated, the frequency extrema make the valley an
alternative DOF to manipulate the flow of pseudospin states
in bulk metacrystal waveguides.

Note that according to the C3-rotation eigenvalue of Ez (or
Hz) fields, the first and second (third and fourth) lowest states
at the K point belong to the A (E) irreducible representation
[42]. In this way, one can label the four lowest states with
different group representations and pseudospin notations, e.g.,
A↑, A↓, E↑, and E↓, as shown in Fig. 1(c). It is distinct from
the gapped Dirac cone cases where two E↑ and two E↓ states
should be found, which has been discussed previously, e.g.,
Ref. [40]. It implies that valley photonics or valley acoustics
can be extended to general triangular and honeycomb systems
beyond those possessing gapped Dirac cones.

III. RESULTS AND DISCUSSIONS

A. Phase diagram of pseudospin-split bulk states

In this section, we discuss the phase diagram of pseudospin-
split bulk states near the K′ and K valleys, showing the
evolution of pseudospin states. In a time-reversal-invariant
system, pseudospin-up and pseudospin-down states are always
doubly degenerate when the system is inversion invariant.
For example, when rod 1 and rod 2 are of the same con-
stitutive parameters, [i.e.,μr1 = μr2 = diag{0.67, 0.67, 0.25},
and see the left inset in Fig. 2(c)], the metacrystal waveguide
is inversion symmetric. It results in the doubly degenerate
frequency bands in the whole Brillouin zone [Fig. 2(c)]. Such
pseudospin degeneracy can be lifted by breaking either time-
reversal or inversion symmetry, and we consider the latter
case which is more straightforward to realize. To break the
inversion symmetry, we keep the constitutive parameters of
rod 2 unchanged, but change the constitutive parameters of
rod 1 (i.e., μr1,xx and μr1,zz). After the inversion symmetry is
broken, the pseudospin states near the K′ and K valleys will split
due to the nonzero valley-pseudospin coupled interaction [40].
Pseudospin states near the K′ and K valleys evolve as functions
of μr1,xx and μr1,zz, and Figure 2(a) shows the phase diagram
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FIG. 2. Variation of pseudospin states near the K valley and band structures of representative metacrystal waveguides. (a) Phase diagram
for pseudospin states near the K valley by considering metacrystal waveguides with different μr1,xx and μr1,zz. Here, only the phase diagram
and schematics of band structures near the K valley are shown, and those near the K′ valley are well predicted according to the time-reversal
symmetry. The solid black (dashed black) curve shows the accidental degeneracy between the A↑ and A↓ (E↑ and E↓) states at the K point.
These two curves divide the phase diagram into four domains (indexed by Roman numerals from I to IV) which are characterized by different
polarizations of the second and third lowest bands near the K valley. (b) Frequency spectra of four pseudospin states at the K point as a function
of μr1,xx , while μr1,zz is fixed at 0.25. By achieving the accidental degeneracy between the A↓ and E↓ states, the pseudospin gap bandwidth is
maximized at μr1,xx = 0.455. The green, yellow, and cyan dots are in accordance with those in the phase diagram in (a). (c) Degenerate band
structure of the inversion symmetric metacrystal waveguide. The unit cell of metacrystal is shown in the left inset. Three hexagonal rods within
the unit cell are marked by indices of 1, 2, and 3, respectively. Rod 1 and rod 2 are set as μr1 = μr2 = diag{0.67,0.67,0.25} while rod 3 is
μr3 = diag{0.39, 0.39, 0.44}. (d) Band structures of four representative metacrystal waveguides in each domain, i.e., metacrystal waveguide
with μr1,xx = 0.5 and μr1,zz = 0.25 (marked by the yellow dot in domain I), with μr1,xx = 0.74 and μr1,zz = 0.38 (marked by the orange dot in
domain II), with μr1,xx = 0.58 and μr1,zz = 0.12 (marked by the pink dot in domain III), and with μr1,xx = 0.85 and μr1,zz = 0.15 (marked by
the purple dot in domain IV).

of pseudospin states near the K valley. Note that those near the
K′ valley can be predicted from the principle of time-reversal
symmetry.

In Fig. 2(a), the solid black curve shows the accidental
degeneracy between the A↑ and A↓ states at the K point. On
the other hand, the dashed black curve shows the accidental
degeneracy between the E↑ and E↓ states at the K point. These
two curves divide the phase diagram into four domains which
are indexed by Roman numerals from I to IV. In each domain,
we plot the schematics of the second and third lowest bands
near the K valley. For example, in domain I, both the second
and third lowest bands are of pseudospin-down polarization
[see the two red bands in Fig. 2(a)]. Hence pseudospin-up
states are prohibited near the K valley and this leads to a
pseudospin-up gap. One representative metacrystal waveguide
with μr1,xx = 0.5 and μr1,zz = 0.25 in domain I is marked by
the yellow dot in Fig. 2(a) and its band structure is shown in the

top-left panel of Fig. 2(d). The numerical result proves once
again that the second and third lowest bands near the K valley
are pseudospin-down polarized. The polarization of these two
bands can be changed by altering μr1,xx and μr1,zz, reaching
other domains in Fig. 2(a). For example, we consider the
metacrystal waveguide with μr1,xx = 0.74 and μr1,zz = 0.38
[marked by the orange dot in Fig. 2(a)]. When it goes from the
yellow dot to the orange dot in the phase diagram, it passes
through the solid black curve, but not the dashed black curve.
This implies that there is a mode exchange between the A↑
and A↓ states, but no exchange between the E↑ and E↓ states.
Hence for metacrystal waveguides in domain II, the second
lowest band changes to be pseudospin-up polarized while the
third lowest band stays as pseudospin-down polarized [blue
band on the bottom, and red band on the top in domain II in
Fig. 2(a)]. This is in good agreement with the calculated band
structure given in the top-right panel of Fig. 2(d). On the other
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hand, when the metacrystal waveguide goes from domain II to
domain IV in the phase diagram, it passes through the dashed
black curve. The mode exchange between the E↑ and E↓ states
happens and the third lowest band changes to be pseudospin-up
polarized. As a result, both the second and third bands near the
K valley become pseudospin-up polarized [see the two blue
bands in domain IV in Fig. 2(a)]. This is confirmed by the band
structure shown in the lower-right panel of Fig. 2(d) for the
metacrystal waveguide with μr1,xx = 0.85 and μr1,zz = 0.15
(marked by the purple dot). Lastly in domain III, we consider
the metacrystal waveguide with μr1,xx = 0.58 and μr1,zz =
0.12 (marked by the pink dot). Its band structure is plotted in the
lower-left panel of Fig. 2(d). The second lowest band near the
K valley is of pseudospin-down polarization, which is different
from that of the purple metacrystal waveguide in domain
IV. This is because it experiences a mode exchange between
the A↑ and A↓ states when transforming from domain IV to
domain III. In the phase diagram in Fig. 2(a), four different
combinations of the polarizations of the second and third bands
near the K valley can be found. This indicates a potential way
to control pseudospin flow by manipulating the polarizations
of pseudospin states and pseudospin gaps (e.g., reconfigurable
photonic valley Hall effect presented in Sec. III B).

The bandwidth of the pseudospin gap can be enlarged
by the accidental degeneracy between the second and third
pseudospin states at the K point (or equivalently the K′ point).
As an example to achieve such accidental case, we keep
μr1,zz = 0.25 but alter μr1,xx . Figure 2(b) shows the frequency
spectra of four pseudospin states at the K point as a function
of μr1,xx . One can see that the frequencies of these four K
valley states increase with the decreasing of μr1,xx . When
μr1,xx = 0.67 at the cyan dot, the A↑ (E↑) state superposes
to the A↓ (E↓) state due to the inversion invariance [Fig. 2(c)].
It is interesting to find that two pseudospin-down states (i.e., A↓
and E↓ states) are accidentally degenerate at μr1,xx = 0.455
(marked by the green dot). This leads to a pseudospin gap with
a 12% gap-midgap ratio [Fig. 1(b)], enabling the broadband
pseudospin-flow control.

B. Reconfigurable photonic valley Hall effect

One of the characteristic manifestations of valley-controlled
propagation of pseudospin states is the photonic valley Hall
effect (PVHE) in which pseudospin states at different valleys
can be separately routed. Employing the opposite group ve-
locities of pseudospin states in the second and third bands,
reconfigurable PVHE can be achieved by shifting the working
frequency. To see this, we consider the metacrystal waveguide
in domain IV, e.g., that marked by the purple dot in the phase
diagram [Figs. 2 and 3(a)]. As presented in the lower-right
panel in Fig. 2(d), the second and third bands near the K valley
are pseudospin-up polarized, while those near the K′ valley are
of pseudospin-down polarization. Two pseudospin gaps, i.e.,
one ranging from 2.48 to 2.6 GHz and the other from 2.85 to
3 GHz, are found. To determine the propagation directions of
pseudospin states in these two gaps, equifrequency contours
should be considered. As examples, Figs. 3(b) and 3(c) show
the equifrequency contours at the frequency of 2.48 GHz in
the second band and the frequency of 2.92 GHz in the third
band, respectively. These two contours are similar, but the

FIG. 3. Reconfigurable photonic valley Hall effect in bulk
metacrystal waveguides. (a) Schematic of the metacrystal waveguide
in domain IV of Fig. 2(a). Outer light-purple region is the homoge-
neous dielectric medium with ε = 13 for guiding pseudospin states
with matched impedance. The horn-shaped polygon stands for the
Ex-polarized face source incident along the +y direction. The face
source is homogeneous along the z direction, while it has a Gaussian
width of 100 mm along the x direction. (b), (c) Equifrequency contour
at the frequency of (b) 2.48 GHz and (c) 2.92 GHz. Pseudospin-up
states at these two frequencies have similar contours but different
increasing frequency directions, resulting in opposite group velocities
(marked by blue arrows). Opposite group velocities are also found
in pseudospin-down states (marked by red arrows). This leads to
the frequency-direction locking pseudospin flow, i.e., reconfigurable
photonic valley Hall effect (PVHE). (d), (e) The PD distributions when
the incident source is operated at the frequency of (d) f = 2.48 GHz,
and (e) f = 2.92 GHz. In (d), pseudospin-up states propagate along
the �K direction while pseudospin-down states propagate along the
�K′ direction. However, in (e), the pseudospin-flow directions are
reversed, and hence reconfigurable PVHE is confirmed.

pseudospin states on them propagate along opposite directions.
For example, pseudospin-up states with f = 2.48 GHz prop-
agate along the �K direction [blue arrow in Fig. 3(b)], while
they switch to propagate along the �K′ direction when the
frequency of 2.92 GHz is considered [blue arrow in Fig. 3(c)].
This is because the propagation direction of the pseudospin
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state, i.e., the group velocity, is perpendicular to the contour
and points in the direction of increasing frequency. For the
second band, the direction of increasing frequency points
toward the valley center, while it points away from the valley
center for the third band. With these opposite group velocities,
reconfigurable PVHE is expected [Figs. 3(d) and 3(e)]. To see
this, an Ex-polarized face source, which is homogeneous along
the z direction and has a Gaussian width of 100 mm along
the x direction, is launched into the metacrystal waveguide
along the +y direction [marked in yellow in Fig. 3(a)]. When
the frequency of 2.48 GHz is considered, the pseudospin-up
component from the source can be filtered out and routed up-
leftward along the �K direction, while the pseudospin-down
component is transferred along the �K′ direction. Such valley-
dependent pseudospin-flow behavior is well demonstrated in
Fig. 3(d) where the PD between Ez and Hz at z = 3d0/4 is
plotted. Obviously, the PD is stable around the value of 0 (cyan)
at the end of the �K propagating channel. Such in-phase feature
indicates that a nearly pure pseudospin-up state propagates
along the �K direction. On the contrary, the propagating waves
along the �K′ direction are pseudospin-down polarized as the
PD is around π (red). On the other hand, as shown in Fig. 3(e),
the pseudospin-down (pseudospin-up) state will be obtained
at the end of the �K (�K′) propagating channel when the
frequency of 2.92 GHz is considered. This PD distribution
is distinct from that shown in Fig. 3(d). With the comparison
between Figs. 3(d) and 3(e), reconfigurable PVHE is achieved
by shifting the operating frequency in the same metacrystal
waveguide. This frequency-direction locking phenomenon,
which is originated from the unique four-band model with two
monopolar and two dipolar modes, proves that a metacrystal
waveguide is an excellent platform for not only observing
pseudospin flow but also controlling it.

C. Pseudospin-direction locking propagation

The pseudospin-direction locking propagation is also iden-
tified in Fig. 4. We consider the metacrystal waveguide in
domain I, e.g., that marked by the green dot in the phase
diagram [Figs. 1 and 4(a)]. When an Ey-polarized face source
(which is homogeneous along the z direction while having a
Gaussian width of 300 mm along the y direction) is launched
along the +x direction, only pseudospin-down states propa-
gating along the �K direction can be excited if the frequency
of 2.9 GHz is considered. Figure 4(b) shows the Ez fields of
rightward propagating pseudospin state at z = 3d0/4. The Ez

fields are parallel to the y axis at the right exit. As only the
pseudospin-down component of the incident source is filtered
and transferred rightward, the PD is stable around π [red in
Fig. 4(c)]. In contrast, when the source is placed on the right,
the pseudospin-up state propagating leftward along the �K′
direction is excited [Fig. 4(d)]. This is verified by the result
shown in Fig. 4(e) where the PD is stable around 0 (cyan) at
the left exit of the metacrystal waveguide.

Pseudospin-direction locking propagation is unique in in-
version asymmetric metacrystal waveguides. As a comparative
case, we study the transmission in an inversion symmetric
metacrystal waveguide in Fig. 5. As shown in Fig. 5(a), we
consider the metacrystal waveguide whose band structure has
been presented in Fig. 2(c). As the inversion symmetry is

FIG. 4. Pseudospin-direction locking propagation in bulk
metacrystal waveguide. (a) Schematic of the metacrystal waveguide
which has been illustrated in Fig. 1 and marked by the green dot
in the phase diagram in Fig. 2. An Ey-polarized source is launched
along the +x or −x direction, with the operating frequency of
f = 2.9 GHz. (b), (c) When the source is launched on the left,
only the rightward pseudospin-down state propagating along the
�K direction is excited, and the PD is around π (red). (d), (e) On
the contrary, when the source is incident on the right, the leftward
propagating pseudospin-up state along the �K′ direction is excited,
and the PD is almost 0 (cyan).

kept, pseudospin-up and pseudospin-down states are doubly
degenerate. Hence an Ey incident source launching on the right
will excite both leftward pseudospin-up and pseudospin-down
flow. These two pseudospin states interfere with each other
when they propagate along the bulk crystal, resulting in the
nonparallel output Ez fields. This is demonstrated by the
wavefront distortion at the left exit in Fig. 5(b). As no pure
pseudospin flow is obtained at the left exit, the PD distributions
are messy and dependent on the y positions.

D. Prototype of photonic blocker

The valley-dependent pseudospin-split bulk band and the
associated valley DOF open a route toward the discovery
of alternative states of light and fancy applications such as
pseudospin-dependent light propagation and nonreciprocal
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FIG. 5. Absence of pseudospin-direction locking propagation in
the inversion symmetric metacrystal waveguide. (a) Schematic of the
inversion symmetric metacrystal waveguide as that shown in Fig. 2(c).
(b) Nonparallel output Ez fields and (c) messy PD distributions at the
left exit when an Ey-polarized source is incident on the right, with
the frequency of f = 2.5 GHz. This is because both pseudospin-up
and pseudospin-down states are excited, and they interfere with each
other while propagating along the bulk crystal.

transport of pseudospin states. In this section, we show the
prototype of a photonic blocker which is constructed by cascad-
ing two metacrystal waveguides [Fig. 6(a)]. The metacrystal
waveguide locating on the right of the dashed yellow line
is that presented in Figs. 1 and 3(a), while the metacrystal
waveguide on the left is obtained by inverting the right one
by 180° along the z direction. When the incident source is
placed on the right, it excites leftward pseudospin-up flow
along the first metacrystal waveguide [see in Figs. 4(d) and
4(e)]. However, as the left metacrystal waveguide only supports
leftward pseudospin-down flow, the excited pseudospin-up
flow in the right metacrystal waveguide will be reflected and
refracted at the interface [see the bottom inset in Fig. 6(c)].
Hence, low transmittance will be observed at the left exit and
the photonic blocker can be realized. To test the performance
of this proposed photonic blocker, we do the transmission
simulation. As presented in Fig. 6(b), the excited light flow by
the right incident source is strongly reflected or refracted, and
it leads to the enhanced Ez fields at the right-hand side. Nearly
zero fields are observed at the left-hand side of this blocker.
We also calculate the transmittance of the photonic blocker
and study the no-blocker case [i.e., Fig. 4(c)] for comparison.
The transmittance of the photonic blocker case is two orders of
magnitude lower than that of the nonblocker case [Fig. 6(c)].

E. Experimental design of metacrystal waveguide

In this section, we will present a concrete design for the
proposed 3D metacrystal waveguide. As stated above, the 3D
metacrystal waveguide consists of two parallel metal plates at
z = 0 mm and z = 48 mm, and one sandwiched metacrystal

FIG. 6. Prototype of photonic blocker. (a) Schematic of pho-
tonic blocker which is constructed by cascading two metacrystal
waveguides together. (b) The Ez fields for photonic blocker at the
frequency of 2.9 GHz. Low transmittance is observed in the left exit
of the propagating channel. (c) Transmittance spectra for no-blocker
(blue) and photonic blocker (black). For the nonblocker, the leftward
pseudospin-up flow meets no obstacles (top inset) while the excited
pseudospin-up flow is reflected and refracted at the interface (bottom
inset). Hence, the transmittance of the photonic blocker case is two
orders of magnitude lower than that of the nonblocker.

with a height of 48 mm. As shown in Fig. 7(a), the designed
metacrystal consists of six layers of metamaterials along the
z direction. Each single layer has a height of 8 mm, and it
consists of one acrylic glass plate on the bottom, one array of
meta-atoms in the middle, and another acrylic glass plate on
the top [Fig. 7(b)]. The acrylic glass plates have a height of
3 mm, and they are drilled with a honeycomb lattice (lattice
constant of 30 mm) of through holes (diameter of 12 mm).
To place the meta-atom array, blind holes with a height of
2.1 mm should also be drilled at the unit-cell center of the
predrilled honeycomb through holes. The geometries of these
blind holes depend on the geometries of meta-atoms that are
placed on them. Between two acrylic glass plates, meta-atoms
with “gyro” or “star” geometries are placed [Fig. 7(c)]. As
shown in the top panel of Fig. 7(c), the gyro meta-atom consists
of two concentric metallic cylinders with different diameters
and heights, i.e., the “fat-short” cylinder with (d1 = 26.8 mm,
h1 = 1 mm) and the “thin-tall” cylinder with (d2 = 5.4 mm,
h2 = 6.2 mm). The star meta-atom is constructed by three
identical metallic blocks each rotated 60° with respect to one
another. The size of each metallic block is 18.7 mm×4.6 mm×
6.2 mm [bottom panel of Fig. 7(c)]. With these well-designed
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FIG. 7. Experimental design and band structure of the realistic metacrystal waveguide. (a) Schematic of the inversion symmetric metacrystal
consisting of six layers of metamaterials which are stacked along the z direction. (b) Schematic of one single layer of metamaterials with a height
of 8 mm. It consists of two acrylic glass plates with drilled holes and one array of meta-atoms. The unit cell of the meta-atom array consists
of one star meta-atom surrounded by two gyro meta-atoms (dashed black hexagon). In accordance with the conceptual structure proposed
in Figs. 1 and 2, the rod 1, rod 2, and rod 3 regions are labeled. (c) Schematics and structural parameters for the gyro (top panel) and star
(bottom panel) meta-atoms. (d) Pseudospin degenerate band structure for inversion symmetric metacrystal waveguide with d1 = 26.8 mm. (e)
Frequency spectra of four pseudospin states at the K point as a function of the diameter of the short-fat cylinder (d1) in the gyro meta-atoms
located in rod 1 region. (f) Valley-dependent pseudospin-split band structure for metacrystal waveguide with d1 = 21.9 mm. All bands are
marked in blue (pseudospin-up) or red (pseudospin-down) according to the pseudospin polarizations of the eigenstates on them. Frequency
isolated pseudospin-split bulk bands appear near the K′ and K valleys. (g) Eigenfields of four pseudospin states at the K point, sharing the same
irreducible representations and pseudospin notations as those in Fig. 1(c).

gyro and star meta-atoms, we construct the unit cell of the
meta-atom array by surrounding one star meta-atom with two
gyro meta-atoms [outlined by the dashed black hexagon in
Fig. 7(b)].

In short, to construct the realistic 3D metacrystal waveguide,
we first array the meta-atoms, and sandwich them between two
acrylic glass plates to form one single layer of metamaterials,
then stack six layers of metamaterials along the z direction,
and lastly put two metal plates at z = 0 and z = 48 mm.
Figure 7(d) shows the corresponding band structure of this
inversion symmetric metacrystal waveguide. Protected by both
the time-reversal and inversion symmetries, pseudospin states
are doubly degenerate in the whole Brillouin zone. To break
the inversion symmetry, we reduce the diameter of the short-fat
cylinder (d1) in the gyro meta-atoms located in the rod 1 region
[labeled in green in Fig. 7(b)]. Frequency spectra of the four
pseudospin states at the K point as a function of d1 are shown
in Fig. 7(e). At d1 = 26.8 mm (marked by the cyan dot), the
A↑ and A↓ (E↑ and E↓) states are frequency degenerate as the

inversion symmetry is preserved. Particularly, two pseudospin-
down states are accidentally degenerate when d1 = 21.9 mm
(marked by the green dot). The bandwidth of the pseudospin
gap is enlarged. Hence, the metacrystal waveguide with d1 =
21.9 mm is chosen and its band structure is shown in Fig. 7(f).
Similar to the band structure of the metacrystal waveguide with
effective parameters presented in Fig. 1(b), bands along the �M
direction are nearly degenerate but pseudospin-split bulk bands
are found near the K′ and K valleys. Although pseudospin states
at the M point are not exactly degenerate, it would not affect
the valley-controlled propagation of the pseudospin state as
the related frequency region is far from the frequency range
of interest. In addition, we also plot out the eigenfields at
z = 3d0/4 of four pseudospin states at the K point. Both the
irreducible representation and pseudospin polarization of each
pseudospin state are in good agreement with the theoretical
results in Fig. 1(c). From the band structure and the eigenfields
in Fig. 7, we expect that the above-mentioned valley-controlled
behaviors, such as reconfigurable PVHE, pseudospin-direction
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locking propagation, and photonic blocker, can be experimen-
tally observed in this designed metacrystal waveguide around
3 GHz.

IV. CONCLUSION

In conclusion, we discuss the valley-controlled propagation
of pseudospin states in 3D bulk metacrystal waveguides with-
out Dirac cones. Valley-dependent pseudospin bands and the
phase diagram of pseudospin states are obtained in metacrystal
waveguides by breaking the inversion symmetry and chang-
ing the constitutive parameters. With the phase diagram,
frequency-direction locking pseudospin flow, i.e., reconfig-
urable PVHE, is achieved by shifting the working frequency.
Pseudospin-direction locking propagation is also realized by
using the valley DOF. Employing the pseudospin-filtered
feature of inversion asymmetric metacrystal waveguides, we
further demonstrate a prototype of a photonic blocker. Lastly, a
realistic metamaterials design of the proposed 3D metacrystal
waveguides is discussed.

The metacrystal waveguide is a good platform for control-
ling pseudospin flow as it has many more structural parameters
for design. For example, the proposal of reconfigurable pho-
tonic valley Hall effect benefits from the complete transition

diagram of the metacrystal waveguide, resulting in frequency-
direction locking behavior which is hardly achieved in previ-
ous photonic systems (e.g., Ref. [40]) and condensed-matter
systems. Note that we focus on valley-controlled propagation
of bulk states in the inversion-symmetry-breaking system in
this work, while the topologically protected behavior such
as robust transport of edge states has been observed in an
inversion-symmetry-invariant metacrystal waveguide [23].

We would also like to note that valley-dependent electro-
magnetic wave behaviors can also be exploited by breaking
the inversion symmetry in other photonic systems such as
three-dimensional photonic crystals, silicon-based metamate-
rials, and gyrotropic media. It will pave a way to not only
fundamental physics that is difficult to observe in electronic
systems, but also the next generation of optical communication
devices based on pseudospin-dependent light propagation, and
nonreciprocal transport of pseudospin states.

ACKNOWLEDGMENTS

This work is supported by the Natural Science Foundation
of China (Grants No. 11522437, No. 11704422, No. 61775243,
and No. 11761161002), and Fundamental Research Funds for
the Central Universities (Grant No. 17lgpy19).

[1] S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J.
D. Joannopoulos, Experimental demonstration of guiding and
bending of electromagnetic waves in a photonic crystal, Science
282, 274 (1988).

[2] H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts,
J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L.
Kuipers, Real-Space Observation of Ultraslow Light in Pho-
tonic Crystal Waveguides, Phys. Rev. Lett. 94, 073903
(2005).

[3] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and
S. Zhang, Metasurface holograms reaching 80% efficiency, Nat.
Nanotechnol. 10, 308 (2015).

[4] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, An
ultrathin invisibility skin cloak for visible light, Science 349,
1310 (2015).

[5] X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu,
R.-W. Peng, and M. Wang, Polarization-dependent perfect
absorbers/reflectors based on a three-dimensional metamaterial,
Phys. Rev. B 88, 115105 (2013).

[6] Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos,
and M. Soljačić, Optical broadband angular selectivity, Science
343, 1499 (2014).

[7] N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V.
Kleiner, and E. Hasman, Spin-optical metamaterial route to
spin-controlled photonics, Science 340, 724 (2013).

[8] J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou,
X.-C. Yuan, and F. Capasso, Polarization-controlled tunable
directional coupling of surface plasmon polaritons, Science 340,
331 (2013).

[9] F. J. Rodriguez-Fortuno, G. Marino, P. Ginzburg, D. O’Connor,
A. Martinez, G. A. Wurtz, and A. V. Zayats, Near-field

interference for the unidirectional excitation of electromagnetic
guided modes, Science 340, 328 (2013).

[10] M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D.
Mori, T. Baba, and L. Kuipers, Observation of Polarization
Singularities at the Nanoscale, Phys. Rev. Lett. 102, 033902
(2009).

[11] I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi,
G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song,
S. Stobbe, and P. Lodahl, Deterministic photon-emitter coupling
in chiral photonic circuits, Nature Nanotechnol. 10, 775 (2015).

[12] J. Petersen, J. Volz, and A. Rauschenbeutel, Chiral nanophotonic
waveguide interface based on spin-orbit interaction of light,
Science 346, 67 (2014).

[13] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A.
Rauschenbeutel, Quantum state-controlled directional sponta-
neous emission of photons into a nanophotonic waveguide, Nat.
Commun. 5, 5713 (2014).

[14] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological photon-
ics, Nat. Photonics 8, 821 (2014).

[15] C. He, L. Lin, X.-C. Sun, X.-P. Liu, M.-H. Lu, and Y.-F. Chen,
Topological photonic states, Int. J. Mod. Phys. B 28, 1441001
(2013).

[16] S. A. Skirlo, L. Lu, and M. Soljačić, Multimode One-Way
Waveguides of Large Chern Numbers, Phys. Rev. Lett. 113,
113904 (2014).

[17] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field for
photons by controlling the phase of dynamic modulation, Nat.
Photonics 6, 782 (2012).

[18] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Photonic Floquet topological insulators, Nature 496, 196 (2013).

184201-9

https://doi.org/10.1126/science.282.5387.274
https://doi.org/10.1126/science.282.5387.274
https://doi.org/10.1126/science.282.5387.274
https://doi.org/10.1126/science.282.5387.274
https://doi.org/10.1103/PhysRevLett.94.073903
https://doi.org/10.1103/PhysRevLett.94.073903
https://doi.org/10.1103/PhysRevLett.94.073903
https://doi.org/10.1103/PhysRevLett.94.073903
https://doi.org/10.1038/nnano.2015.2
https://doi.org/10.1038/nnano.2015.2
https://doi.org/10.1038/nnano.2015.2
https://doi.org/10.1038/nnano.2015.2
https://doi.org/10.1126/science.aac9411
https://doi.org/10.1126/science.aac9411
https://doi.org/10.1126/science.aac9411
https://doi.org/10.1126/science.aac9411
https://doi.org/10.1103/PhysRevB.88.115105
https://doi.org/10.1103/PhysRevB.88.115105
https://doi.org/10.1103/PhysRevB.88.115105
https://doi.org/10.1103/PhysRevB.88.115105
https://doi.org/10.1126/science.1249799
https://doi.org/10.1126/science.1249799
https://doi.org/10.1126/science.1249799
https://doi.org/10.1126/science.1249799
https://doi.org/10.1126/science.1234892
https://doi.org/10.1126/science.1234892
https://doi.org/10.1126/science.1234892
https://doi.org/10.1126/science.1234892
https://doi.org/10.1126/science.1233746
https://doi.org/10.1126/science.1233746
https://doi.org/10.1126/science.1233746
https://doi.org/10.1126/science.1233746
https://doi.org/10.1126/science.1233739
https://doi.org/10.1126/science.1233739
https://doi.org/10.1126/science.1233739
https://doi.org/10.1126/science.1233739
https://doi.org/10.1103/PhysRevLett.102.033902
https://doi.org/10.1103/PhysRevLett.102.033902
https://doi.org/10.1103/PhysRevLett.102.033902
https://doi.org/10.1103/PhysRevLett.102.033902
https://doi.org/10.1038/nnano.2015.159
https://doi.org/10.1038/nnano.2015.159
https://doi.org/10.1038/nnano.2015.159
https://doi.org/10.1038/nnano.2015.159
https://doi.org/10.1126/science.1257671
https://doi.org/10.1126/science.1257671
https://doi.org/10.1126/science.1257671
https://doi.org/10.1126/science.1257671
https://doi.org/10.1038/ncomms6713
https://doi.org/10.1038/ncomms6713
https://doi.org/10.1038/ncomms6713
https://doi.org/10.1038/ncomms6713
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1142/S021797921441001X
https://doi.org/10.1142/S021797921441001X
https://doi.org/10.1142/S021797921441001X
https://doi.org/10.1142/S021797921441001X
https://doi.org/10.1103/PhysRevLett.113.113904
https://doi.org/10.1103/PhysRevLett.113.113904
https://doi.org/10.1103/PhysRevLett.113.113904
https://doi.org/10.1103/PhysRevLett.113.113904
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1038/nphoton.2012.236
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066


CHEN, DENG, LU, AND DONG PHYSICAL REVIEW B 97, 184201 (2018)

[19] Y. Hatsugai, Chern Number and Edge States in the Integer
Quantum Hall Effect, Phys. Rev. Lett. 71, 3697 (1993).

[20] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A.
H. MacDonald, and G. Shvets, Photonic topological insulators,
Nat. Mater. 12, 233 (2012).

[21] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Robust
optical delay lines with topological protection, Nat. Phys. 7, 907
(2011).

[22] L.-H. Wu and X. Hu, Scheme for Achieving a Topological
Photonic Crystal by Using Dielectric Material, Phys. Rev. Lett.
114, 223901 (2015).

[23] W.-J. Chen, S.-J. Jiang, X.-D. Chen, B. Zhu, L. Zhou, J.-W.
Dong, and C. T. Chan, Experimental realization of photonic
topological insulator in a uniaxial metacrystal waveguide, Nat.
Commun. 5, 5782 (2014).

[24] X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack,
and A. B. Khanikaev, Robust reconfigurable electromagnetic
pathways within a photonic topological insulator, Nat. Mater.
15, 542 (2016).

[25] B. Xiao, K. Lai, Y. Yu, T. Ma, G. Shvets, and S. M. Anlage,
Exciting reflectionless unidirectional edge modes in a reciprocal
photonic topological insulator medium, Phys. Rev. B 94, 195427
(2016).

[26] K. Lai, T. Ma, X. Bo, S. Anlage, and G. Shvets, Exper-
imental realization of a reflections-free compact delay line
based on a photonic topological insulator, Sci. Rep. 6, 28453
(2016).

[27] D. Xiao, W. Yao, and Q. Niu, Valley-Contrasting Physics in
Graphene: Magnetic Moment and Topological Transport, Phys.
Rev. Lett. 99, 236809 (2007).

[28] A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter
and valley valve in graphene, Nat. Phys. 3, 172 (2007).

[29] H. Pan, Z. Li, C.-C. Liu, G. Zhu, Z. Qiao, and Y. Yao, Valley-
Polarized Quantum Anomalous Hall Effect in Silicene, Phys.
Rev. Lett. 112, 106802 (2014).

[30] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins
in layered transition metal dichalcogenides, Nat. Phys. 10, 343
(2014).

[31] X. Wu, Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, and W.
Wen, Direct observation of valley-polarized topological edge
states in designer surface plasmon crystals, Nat. Commun. 8,
1304 (2017).

[32] T. Ma and G. Shvets, All-Si valley-Hall photonic topological
insulator, New J. Phys. 18, 025012 (2016).

[33] X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, Valley-
contrasting physics in all-dielectric photonic crystals: Orbital
angular momentum and topological propagation, Phys. Rev. B
96, 020202(R) (2017).

[34] R. K. Pal and M. Ruzzene, Edge waves in plates with resonators:
An elastic analogue of the quantum valley Hall effect, New J.
Phys. 19, 025001 (2017).

[35] O. Bleu, D. D. Solnyshkov, and G. Malpuech, Quantum valley
Hall effect and perfect valley filter based on photonic analogs
of transitional metal dichalcogenides, Phys. Rev. B 95, 235431
(2017).

[36] J. Noh, S. Huang, K. Chen, and M. C. Rechtsman, Observation of
Photonic Topological Valley Hall Edge States, Phys. Rev. Lett.
120, 063902 (2018).

[37] F. Gao, H. Xue, Z. Yang, K. Lai, Y. Yu, X. Lin, Y. Chong,
G. Shvets, and B. Zhang, Topologically protected refraction of
robust kink states in valley photonic crystals, Nat. Phys. 14, 140
(2018).

[38] J. Lu, C. Qiu, M. Ke, and Z. Liu, Valley Vortex States in Sonic
Crystals, Phys. Rev. Lett. 116, 093901 (2016).

[39] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu,
Observation of topological valley transport of sound in sonic
crystals, Nat. Phys. 13, 369 (2016).

[40] J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, Valley
photonic crystals for control of spin and topology, Nat. Mater.
16, 298 (2017).

[41] X.-D. Chen, Z.-L. Deng, W.-J. Chen, J.-R. Wang, and
J.-W. Dong, Manipulating pseudospin-polarized state of light
in dispersion-immune photonic topological metacrystals, Phys.
Rev. B 92, 014210 (2015).

[42] K. Sakoda, Optical Properties of Photonic Crystals (Springer
Science & Business Media, New York, 2005).

184201-10

https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1038/ncomms6782
https://doi.org/10.1038/ncomms6782
https://doi.org/10.1038/ncomms6782
https://doi.org/10.1038/ncomms6782
https://doi.org/10.1038/nmat4573
https://doi.org/10.1038/nmat4573
https://doi.org/10.1038/nmat4573
https://doi.org/10.1038/nmat4573
https://doi.org/10.1103/PhysRevB.94.195427
https://doi.org/10.1103/PhysRevB.94.195427
https://doi.org/10.1103/PhysRevB.94.195427
https://doi.org/10.1103/PhysRevB.94.195427
https://doi.org/10.1038/srep28453
https://doi.org/10.1038/srep28453
https://doi.org/10.1038/srep28453
https://doi.org/10.1038/srep28453
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1038/nphys547
https://doi.org/10.1038/nphys547
https://doi.org/10.1038/nphys547
https://doi.org/10.1038/nphys547
https://doi.org/10.1103/PhysRevLett.112.106802
https://doi.org/10.1103/PhysRevLett.112.106802
https://doi.org/10.1103/PhysRevLett.112.106802
https://doi.org/10.1103/PhysRevLett.112.106802
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/nphys2942
https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1088/1367-2630/18/2/025012
https://doi.org/10.1088/1367-2630/18/2/025012
https://doi.org/10.1088/1367-2630/18/2/025012
https://doi.org/10.1088/1367-2630/18/2/025012
https://doi.org/10.1103/PhysRevB.96.020202
https://doi.org/10.1103/PhysRevB.96.020202
https://doi.org/10.1103/PhysRevB.96.020202
https://doi.org/10.1103/PhysRevB.96.020202
https://doi.org/10.1088/1367-2630/aa56a2
https://doi.org/10.1088/1367-2630/aa56a2
https://doi.org/10.1088/1367-2630/aa56a2
https://doi.org/10.1088/1367-2630/aa56a2
https://doi.org/10.1103/PhysRevB.95.235431
https://doi.org/10.1103/PhysRevB.95.235431
https://doi.org/10.1103/PhysRevB.95.235431
https://doi.org/10.1103/PhysRevB.95.235431
https://doi.org/10.1103/PhysRevLett.120.063902
https://doi.org/10.1103/PhysRevLett.120.063902
https://doi.org/10.1103/PhysRevLett.120.063902
https://doi.org/10.1103/PhysRevLett.120.063902
https://doi.org/10.1038/nphys4304
https://doi.org/10.1038/nphys4304
https://doi.org/10.1038/nphys4304
https://doi.org/10.1038/nphys4304
https://doi.org/10.1103/PhysRevLett.116.093901
https://doi.org/10.1103/PhysRevLett.116.093901
https://doi.org/10.1103/PhysRevLett.116.093901
https://doi.org/10.1103/PhysRevLett.116.093901
https://doi.org/10.1038/nphys3999
https://doi.org/10.1038/nphys3999
https://doi.org/10.1038/nphys3999
https://doi.org/10.1038/nphys3999
https://doi.org/10.1038/nmat4807
https://doi.org/10.1038/nmat4807
https://doi.org/10.1038/nmat4807
https://doi.org/10.1038/nmat4807
https://doi.org/10.1103/PhysRevB.92.014210
https://doi.org/10.1103/PhysRevB.92.014210
https://doi.org/10.1103/PhysRevB.92.014210
https://doi.org/10.1103/PhysRevB.92.014210



