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Abstract
The valley is a flexible degree of freedom for light manipulation in photonic systems. In this
work, we introduce the valley concept in magnetic photonic crystals with broken inversion
symmetry. One-way propagation of bulk states is demonstrated by exploiting the pseudo-gap
where bulk states only exist at one single valley. In addition, the transition between Hall and
valley-Hall nontrivial topological phases is also studied in terms of the competition between the
broken inversion and time-reversal symmetries. At the photonic boundary between two
topologically distinct photonic crystals, we illustrate the one-way propagation of edge states and
demonstrate their robustness against defects.

Keywords: photonic crystals, one-way propagation, topological photonics

(Some figures may appear in colour only in the online journal)

1. Introduction

The valley degree of freedom (DoF) has been used to study
valley-dependent Berry phase and valley-contrasting Hall
transport in two-dimensional materials [1–5]. Regarding the
similarity between electronic systems and classical systems,
many fancy phenomena, e.g. valley vortex states and valley-
spin locking behaviors, have been illustrated by expanding
the concept of the valley DoF into sonic crystals [6–8],
photonic crystals (PCs) [9–13] and plasmon crystals [14, 15].
Focusing on the inversion symmetry breaking bianisotropic
PCs, the photonic valley-Hall effect has been demonstrated—
that different spin flows in opposite valleys can be separately
routed [10]. By inspecting the nontrivial topology, robust
transport of valley-polarized edge states has been demon-
strated when inter-valley scattering is prohibited [9, 11, 12].
On the other hand, nonreciprocal devices, e.g. photonic

waveguides and photonic isolators, are important in integrated
photonic circuits. Magnetic media are among the time-
reversal symmetry breaking materials that have been widely
used in realizing nonreciprocal devices. For example, the
analogue of the quantum Hall effect was theoretically pro-
posed in gyroelectric or magnetic PCs [16–19], and then
experimentally demonstrated in PCs by adapting magneto-
optical materials [20, 21]. By employing the nonreciprocity
and the nontrivial topology characterized by nonzero Berry
phase, one-way propagation of electromagnetic (EM) waves
has been realized [22–24]. Since then, magnetic PCs have
been studied to observe topologically nontrivial edge states
[25–28] and control wave propagation [29–32].

Generally, when one draws the band structure of honey-
comb latticed structures, it is common to observe extrema
points where maxima or minima of energy occur in momentum
space. The term ‘valley’ is applied to these energy extrema
[33]. Taking graphene with broken inversion symmetry as an
example, there are two valleys of energy bands at the corners of
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the Brillouin zone, viz. points K and K′. The intrinsic magnetic
moment is concentrated in the valleys and has opposite signs at
these two inequivalent valleys [1]. The Berry curvatures also
have opposite values in these two valleys. It results in the
opposite optical selection rules [2] and contrasting Hall trans-
port with electrons flowing in opposite directions transverse to
an in-plane electric field [3]. Because of the large separation
between the two valleys in momentum space, scattering
between them is strongly suppressed [34, 35], and hence the
valley binary DoF is introduced to represent the local energy
extrema at two corners of the Brillouin zone to distinguish their
opposite physical quantities and distinct phenomena [4, 5, 33].
In this paper, we introduce the valley DoF in magnetic PCs and
discuss the one-way propagation of bulk states and robust edge
states. We first consider PCs with broken inversion and time-
reversal symmetries, and present a model effective Dirac
Hamiltonian (section 2). The broken symmetries of PCs lead to
a pseudo-gap in which one-way propagation of bulk states is
found (section 3). On altering the structural parameters of
magnetic PCs, the competition of two broken symmetries gives
rise to a topological phase transition (section 4). The valley-
dependent edge states are found and their robustness against
defects is also demonstrated (section 5). Lastly, we give a brief
summary and discussion in section 6. The detailed derivation
of the effective Hamiltonian is given in appendix A, and the
simulation methods are shown in appendix B.

2. Photonic crystals with broken inversion and time-
reversal symmetries

Let us start by considering a two-dimensional honeycomb PC
with a lattice constant of a=15 mm (figure 1(a)). The unit
cell contains two circular rods embedded in an air back-
ground. Rod 1 has a diameter of d1=6 mm, while rod 2 has
a diameter of d2=5 mm. As d1 ≠ d2, the inversion symmetry
is broken. In addition, the constitutive parameters of each rod

are set as εr=15.26 and
i

i
0.78 0.93 0
0.93 0.78 0
0 0 1

.rm = -
 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟ Note that

as the transverse magnetic modes are discussed in this work,
the out-of-plane components of rm


(e.g. r,zzm ) have no influ-

ence on the band structure or the flow of light in the PC.
These constitutive parameters correspond to those of a
magnetic material at 6 GHz with an external magnetic field of
500 Oe and a saturation magnetization of 1884 Ga [36, 37].
With the introduction of an external magnetic field H0 and the
resulting nonzero non-diagonal permeability, the time-rever-
sal symmetry is broken in this PC (called PC1 hereafter).
Figure 1(b) shows the corresponding band structure of the
transverse magnetic modes with nonzero z-component of
electric fields. The band structure calculation and transmis-
sion results below are simulated using the commercial soft-
ware COMSOL Multiphysics with the radio frequency
module. As both inversion and time-reversal symmetries are
broken, eigen-states at two inequivalent valleys, K and K′,
have different frequencies (compare band dispersions at K
and K′). This is accurately predicted by considering the

effective Dirac Hamiltonian of honeycomb PCs with both
inversion and time-reversal symmetries broken [9, 38]:

H f q f K k k

, 1

D x z x y y
P

z

T
z z

0 n s t d s d l s

l s t

= - = + +

+

 ˆ ( ) ( ) ( ˆ ˆ ˆ ) ˆ
ˆ ˆ ( )

where f K0


( ) is the degenerate Dirac frequency at points K

and K′ with inversion and time-reversal symmetries. kd

is

measured from point K or K′. iŝ and it̂ are the Pauli matrices
acting on sub-lattice and valley spaces, respectively (see
detailed derivation of Hamiltonian in appendix A). Note that
in equation (1), the perturbed frequencies with respect to
f K0


( ) are considered. According to the Hamiltonian pre-

sented in equation (1), when bulk states at points K and K′ are
considered, we have k k 0.x yd d= = The two eigen-states at
point K′ 1zt = -( ) have the frequencies of f K P T

1 l l¢ = -( )
for 1zs = + and f K P T

2 l l¢ = - -( ) ( ) for 1.zs = - Simi-
larly, the two eigen-states at point K 1zt = +( ) have the
frequencies of f K P T

1 l l= +( ) for 1zs = + and
f K P T
2 l l= - +( ) ( ) for 1.zs = - When the time-reversal
symmetry is broken, i.e. 0,Tl ¹ then P T P Tl l l l- ¹ +
and .P T P Tl l l l- - ¹ - +( ) ( ) This means that valley
states at points K and K′ have different frequencies, resulting
in a pseudo-gap in which bulk states only exist in a single
valley. For example, as indicated by the green rectangles in
figure 1(b), there are two pseudo-gaps. The lower one ranges
from 5.44 GHz to 5.78 GHz, the upper from 6.23 GHz to
6.82 GHz. Bulk states only exist in the K′ valley in these two
pseudo-gaps. Note that the band structure will be changed
when the frequency-dependent permeability tensor is con-
sidered. For example, the frequency range of the second
pseudo-gap will change to be from 6.13 GHz to 6.5 GHz with
a smaller bandwidth due to the material dispersion. However,
the one-way propagation of bulk states and edge states pre-
sented in the following sections are not substantially influ-
enced by these effects. Note also that magnetic surface
plasmon resonance has been found in dispersive magnetic
media, leading to many interesting phenomena such as
enhanced nonreciprocal scattering and beam steering [39–41].
As magnetic surface plasmon resonance is beyond the scope
of this work, we carefully tune the structural parameters of
our PC (e.g. the lattice constant) and focus on the frequency
region near 6 GHz.

3. One-way propagation of bulk states

Employing the pseudo-gaps of PCs with broken inversion and
time-reversal symmetries, a one-way propagation of bulk
states is expected. To see this, we send a light beam with an
incident angle of θ=30° from the upper-left (marked by the
red arrow in figure 2(a)) into PC1 with the zigzag interface.
The working frequency is taken to be inside the second
pseudo-gap, viz. f=6.8 GHz. When the incident wave
encounters the photonic interface, it will be refracted into
PC1. The direction of the refracted beam can be determined
from the isofrequency diagram which is shown in figure 2(b).
Due to the frequency asymmetry induced by broken inversion
and time-reversal symmetries, the isofrequency diagram

2

J. Opt. 20 (2018) 075103 J-C Lu et al



ranging from 6.23 to 6.8 GHz only exists in the K′ valley. For
the chosen frequency of f=6.8 GHz, i.e. fa/c=0.34, we
superimpose the contour of the incident medium (air, a
dashed black circle with f=c|k|/2π). The incident wave
corresponds to the red arrow. According to the Bloch theorem
under Bragg scattering, only states with the same k|| can be
excited. To select states with the same k||, we draw a dashed
black line through the incident wave vector (k) and
perpendicular to the interface (here, along the ΓM direction).
This dashed line intersects with the isofrequency contours at
two places, but only the upper one determines the refracted
beam direction as its group velocity points toward the crystal
from the interface (green arrow). As the incident and refracted
beams lie at the same side of the normal of interface, negative
refraction will occur. This is well confirmed by the incident
and refracted beams in the upper interface in figure 2(a).
When the refracted wave beam encounters the lower inter-
face, the negative refraction happens again. The output wave
beam lastly propagates into air with a positive angle of 30°
(marked by the blue arrow in figures 2(a) and (b)). However,
as both inversion and time-reversal symmetries are broken,
such a wave beam cannot go back through the same path. To
see this, we consider incident transmission in which the light
beam arrives from the lower-right corner with an incident
angle of 30° (figure 2(c)). Once again, we draw a dashed

black line through the incident k and perpendicular to the
interface (figure 2(d)). This dashed line has no intersection
with the isofrequency contour of PC1, and hence the incident
wave will be totally reflected. The simulation result is in good
agreement with the theoretical prediction (figure 2(c)). By the
comparison between transmissions in figures 2(a) and (c),
one-way propagation of bulk states is demonstrated. Note that
in order to have one-way propagation of bulk states, the
bandwidth of the pseudo-gap should be larger than 3.2%,
which corresponds to a PC with d1>5.65 mm and
d2<5.35 mm. The PC in figure 1 has a pseudo-gap with a
bandwidth of 9.0%, which is large enough to observe the one-
way propagation of bulk states, as shown in figure 2.

4. Topological phase transition

Besides the one-way propagation of bulk states, nontrivial
topology related to gapping out Dirac cones at the corner of
the Brillouin zone can be also found in PC1. The topology of
a PC is related to the Berry curvature of the lowest band,
which is defined as k i u uk k k kW º  ´ á  ñ

    ( ) [ ∣ ∣ ], where uk
 is

the electromagnetic field and ...á ñ is integrated within the unit
cell. By integrating the Berry curvature near the K (K′) valley
which is marked in red (blue) in the right inset of figure 1(a),

Figure 1. (a) A honeycomb magnetic photonic crystal with lattice constant a=15 mm. The unit cell is outlined by the dashed hexagon in
which the diameters of rod 1 and rod 2 are 6 mm and 5 mm respectively. The boundaries of the first Brillouin zone and the third Brillouin
zone are respectively outlined by solid and dashed black lines in the right inset. (b) The band structure of the transverse magnetic modes with
nonzero z-component of electric fields (Ez). Two pseudo-gaps, in which bulk states only exist in a single valley, are shaded in green. (c) The
amplitude of Ez of four eigen-states at points K and K′.
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one can obtain the Chern number, CK (CK′), which characterizes
the topological phase. Based on the Hamiltonian presented
in equation (1), the Chern number is given by
C sgn 2z

P T
zz *t l l t= +t ( )/ [1, 9, 38]. Here, the valley index zt

takes the value of +1 (−1) for the K (K′) valley. We take PC1
in figure 1 as an example to show the concrete calculation of CK

and CK′. The amplitude of Ez fields of four eigen-states at points
K and K′ are shown in figure 1(c). At point K, the the electric
field of the bulk state with the lower frequency is mostly

located at rod 1, which corresponds to the 1zs = + state. That is
to say, f K f K1 2<( ) ( ) P T P Tl l l l=> + < - +( ) Pl=> +

0.Tl < So we have C 1 sgn 2 1P T
K * l l= + =( )/

1 2 1 2.* - = -( )/ / In contrast, at point K′, the bulk state with
the lower frequency has its electric field mostly located at rod 2,
which corresponds to the 1zs = - state. Then f K f K2 1¢ < ¢( ) ( )

P T P Tl l l l=>- - < -( ) 0,P Tl l=> - > so we have
C 1 sgn 2 1 1 2 1 2.P T

K * *l l= - - = - = -¢ ( ) ( )/ / / Hence,
it belongs to the quantum Hall phase with nonzero Chern

Figure 2. One-way propagation of bulk states and the isofrequency diagram. (a) Simulation for incident light beam with an oblique angle of
30° from upper left (indicated by a red arrow) at the frequency of 6.8 GHz. The negative refraction happens at the photonic interfaces
between the PC and the air background. (b) Isofrequency diagram of PC1 for frequencies ranging from 6.23 GHz to 6.8 GHz. The dashed
circular lines mark the contour of the incident and output medium, i.e. air. The red, green, and blue arrows indicate the propagation directions
of EM flow in the upper air, PC, and lower air regions, respectively. (c) Simulation for incident light beam with an oblique angle of 30° from
lower right (indicated by a red arrow) at the frequency of 6.8 GHz. The incident wave is totally reflected. (d) Isofrequency diagram and EM
flow directions for figure 2(c).
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number C=CK+CK′=−1 and zero valley Chern number
Cv=CK−CK′=0. The Chern number and valley Chern
number are two invariants which characterize the topological
properties of band structures of PCs. They determine the number
and group velocity of edge states when a photonic boundary is
considered. Considering PC1, its nontrivial topological phase is
dominated by the broken time-reversal symmetry. A topological
transition is expected to result from the competition between
two broken symmetries. To see this, we alter the diameters of
the two rods d1 and d2, to change the strength of the broken
inversion symmetry. In contrast, we keep (d1+d2) unchanged
to approximately maintain the strength of broken time-reversal
symmetry. Figure 3(a) shows the frequency spectra of four
states at points K and K′ as a function of d1. As we can see,
three topological phases with different topological invariants are
found. The abovementioned PC1 in figure 1(b) is characterized
by C=−1 and Cv=0. This topological phase is shaded in red
in figure 3(a). With the increase of d1 and the simultaneous
decrease of d2, the two states at point K point move apart. In

contrast, the two states at K′ point come close, meet each other
(at d1=6.48mm), and separate. With this mode exchange, the
band gap is closed and reopened. After such a topological phase
transition, the effect of broken inversion symmetry is dominant,
and the resulting magnetic PC is characterized by C=0 and
Cv=−1 (i.e. the valley-Hall phase). Figure 3(c) shows the
band structure of one representative PC with d1=7.2 mm and
d2=3.8 mm (the unit cell is shown in the inset; we refer to this
PC as PC2 hereafter). Band asymmetry for eigen-states in the K
and K′ valleys is also found. When we decrease d1 while
increasing d2, the behavior of states at points K and K′ evolves
differently. There exists a mode exchange for states at point K
when d1=4.52mm, but no mode exchange happens for states
at point K′. With the mode exchange at point K, the PC
topology is characterized by C=0 and Cv=1 (i.e. another
valley-Hall phase). A representative PC with d1=3.8 mm and
d2=7.2 mm (called PC3 hereafter) and its band structure are
shown in figure 3(b).

Figure 3. Frequency spectra of four states at points K and K′, and band structures of two more PCs. (a)Mode evolution of four eigen-states at
points K and K′ as a function of the diameter of rod 1, i.e. d1. Modes with electric fields concentrated at rod 1 and rod 2 are respectively
marked by triangles and squares. Solid and hollow markers represent modes of points K and K′ respectively. Under the competition between
broken time-reversal and inversion symmetries, a topological phase transition occurs when mode exchange happens at point K or K′. Three
topologically distinct phases with different Chern and valley Chern numbers are shaded in different colors. (b) Band structure for PC3, with
d1=3.8 mm and d2=7.2 mm. (c) Band structure for PC2, with d1=7.2 mm and d2=3.8 mm.
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5. One-way propagation of edge states and their
robustness

With these three topological phases, protected edge states at the
photonic boundary between topologically distinct PCs will be
found. Figure 4 shows three different photonic boundaries. In
figure 4(a), we build up a photonic boundary with PC1 at the
bottom and PC2 at the top. For PC1, we have CK=−1/2 and
CK′=−1/2, while for PC2, CK=−1/2 and CK′=1/2. The
Chern number difference across the boundary is then 0 at valley
K while it is−1 at K′. As a result, there is one gapless edge state
with negative group velocity across the K′ valley (figure 4(b)).
One-way propagation of these edge states is expected as their
counter-propagating states are missing. For example, at the fre-
quency of 6 GHz, leftward EM waves can be excited when the
input source is placed on the right (figure 4(d)). However, no
EM flow can be observed when the source is put on the left
(figure 4(c)). Comparison between figures 4(c) and (d)

demonstrates the one-way propagation of edge states. By
replacing PC2 in the first photonic boundary with PC3, we
obtain the second photonic boundary, with PC1 on the bottom
and PC3 on the top (figure 4(e)). For this boundary, the Chern
number difference across valley K is−1, and gapless edge states
with negative group velocity are found near K (figure 4(f)).
However, no edge states can be found near valley K′. Similarly,
one-way propagation of edges state is also demonstrated
(figures 4(g) and (h)). Note that by inference from the excited
field distribution in figures 4(d) and (h), these two edge states are
different, although both of them propagate leftwards. Lastly, we
consider the photonic boundary consisting of two PCs with
different valley Chern number (figure 4(i) with PC3 on the top
and PC2 on the bottom). According to the Chern number dif-
ference, edge states with negative group velocity exist at valley
K; those with positive group velocity, at valley K′ (figure 4(j)).
As a result, both sources on the left or right can excite EM
waves along the boundary (figures 4(k) and (l)).

Figure 4. One-way propagation of edge states. (a) Schematic of photonic boundary constructed by PC1 (red) at the bottom and PC2 (blue) at
the top. (b) Projected band structure in which bulk states are shaded in black and edge states in pink. There exists one gapless edge state with
negative group velocity at the K′ valley. (c), (d) The transmission of edge states at 6 GHz when the excited source is put at the (c) left end and
(d) right end. One-way propagation of edge states is demonstrated on comparing figures 4(c) and 4(d). (e)–(h) Schematic of photonic
boundary constructed by PC1 at the bottom and PC3 at the top, the projected band structure, and one-way propagation of edge states. (i) The
schematic of photonic boundary which is constructed by PC2 (blue) at the bottom and PC3 (cyan) at the top. (j) Projected band structure:
bulk states are shaded in black, edge states in pink. Valley-dependent edge states are found at two inequivalent valleys. (k), (l) Transmission
of edge states at 6 GHz when the excited source is put at the (k) left end and (l) right end. Both leftward and rightward EM flows are excited.
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Gapless edge states are robust against defects and dis-
orders. For example, we insert a metallic plate as an insulating
obstacle in the middle of the first photonic waveguide, and put
the incident source at the right side (figure 5(a)). The excited
leftward EM flow can go around the metallic obstacle and
keep moving leftwards. No backscattering is observed, and
perfect transmission is demonstrated. In contrast, although the
valley-dependent edge states shown in figure 4(i) are robust
against some sharp corners [11], they suffer backscattering
when inter-valley scattering is not suppressed. As presented in
figure 5(b), excited leftward edge states at the photonic
boundary between PC2 and PC3 are strongly reflected when
the same metallic obstacle is inserted vertically into the
boundary. No transmission can be detected at the left end.

6. Conclusion

To conclude, we have extended valley DoF into magnetic
PCs with broken inversion symmetry. Under both broken
time-reversal and inversion symmetries, two pseudo-gaps
where the bulk states only exit at one single valley are
obtained. This results in the one-way propagation of bulk
states in a single PC. Further, we have also demonstrated the
topological phase transition induced by the competition
between two broken symmetries. By constructing photonic
boundaries between PCs within different topological phases,
one-way edge states which are robust against certain defects
are illustrated. Our work provides a potential way to realize
one-way devices such as waveguides and filters in the

Figure 5. Robustness of edge states. (a) A metallic obstacle is inserted into the center of the photonic waveguide constructed by PC1 at the
bottom and PC2 at the top. When the incident source (red star) is put at the right end, the excited leftward EM flow can go around the metallic
obstacle, and no backscattering is observed. (b) The transmission of edge state at the photonic boundary between PC2 and PC3 when a
metallic obstacle is inserted in the boundary. As the inter-valley scattering is not suppressed, strong backscattering is observed, and no
transmission is obtained at the left end.
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microwave range where magnetic materials with large time-
reversal symmetry breaking response can be found. Although
magnetic materials are rare and usually have limited time-
reversal breaking response in the optical regime, on-chip
optical isolation [42] and nonreciprocal lasing [43] have
recently been realized in near-infrared frequencies. This
provides inspiration to extend the valley-related properties
presented in this work into the optical regime.
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Appendix A. Photonic effective Hamiltonian

In this appendix, we derive the effective Hamiltonian of
magnetic PCs with broken inversion and time-reversal sym-
metries. As the transverse magnetic modes with nonzero (Hx,
Hy, Ez) are considered, the related constitutive parameters are
the out-of-plane relative permittivity ze and the in-plane

relative permeability
i

i
.r

xx xy

xy xx
m

m m

m m
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 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟∣∣ The corresponding

Maxwell equations are:

E i H i H

E i H i H

H H i E . A1

y z xx x xy y

x z xx y xy x

x y y x z z

0

0

0

wm m m

wm m m

we e

¶ = +

- ¶ = -

¶ - ¶ = -

( )
( )

( )

By expressing Hx and Hy in terms of Ez, we get:
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lizing the periodicity of the photonic crystals, we expand the
fields and the constitutive parameters as E r q,z =
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equation (A2), the linear equations for the Fourier compo-
nents of Ez can be obtained:
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Next, we focus on two time-reversal but inequivalent
valleys: K and K′. First, for the K valley, we truncate the
plane wave basis to the first three plane waves near point Γ.
The basis for these plane waves basis comprises the three
equal-length reciprocal vectors: K Gi+

 
each rotating 2π/3

with respect to one another, where K K, 0=
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q ky yd= in the vicinity of point K. Then a 3×3 equation can
be obtained for the Fourier components of field Ez:
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E E E E; ; .G G G0 1 2=˜ [ ] Note that here we neglect the high
order perturbation induced by the inversion asymmetric
component of m r( ) and r .q ( ) Using the transformation
U U, 0; 0,[ ˆ ˆ ˆ ˆ ], where U 1,1,1;1, , ; 1, , 32 2h h h h=ˆ [ ]/ and

iexp 2 3 ,h p= ( )/ one can obtain the Dirac bands by elim-
inating the monopolar band:
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where E E E;d G G1 2= [ ] and iŝ are Pauli matrices acting
on the sub-lattices. When q K=


is studied, and first

considering the inversion symmetric case with time-reversal
symmetry, we have the Dirac frequency: f K0 =


( )

m m

c

K 2

2 2
,G G

G G G0 0
1 2

0 1

0 1 2m e b b b
+

- -
( )

[ ( )]
/

/ / /
where c is the speed of

light in vacuum. After introducing the broken inversion
symmetry by the asymmetric rze

( ) and broken time-reversal
symmetry by the nonzero r ,xy xx xy

2 2q m m m= -( ) ( )/
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equation (A5) is reduced to

k k E f q E , A6D x x y y
P

z
T

z d dn s d s d l s l s+ + + = D [ ( ˆ ˆ ) ˆ ˆ ] ( ) ( )
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The above procedure can be repeated around the K′
valley K K, 0 ,¢ = -


( [ ]) and we get

k k E f q E .

A7
D x x y y

P
z

T
z d dn s d s d l s l s- + + - = D [ ( ˆ ˆ ) ˆ ˆ ] ( )

( )

By introducing valley Pauli matrices it̂ ( 1zt = + for
point K and 1zt = - for K′), we obtain the photonic
effective Hamiltonian, as shown in equation (1) of the
main text:

H f q f K k k .

A8
D x z x y y

P
z

T
z z0 n s t d s d l s l s t= - = + + + ˆ ( ) ( ) ( ˆ ˆ ˆ ) ˆ ˆ ˆ

( )

Appendix B. Simulation methods

The simulations in the main text were performed with
COMSOL Multiphysics. The unit cell of the honeycomb
magnetic PC is shown in figure B1(a). Two rods (shaded in
blue) are set as magnetic medium, and the background is set
as air. Three pairs of boundaries (i.e. boundaries of 1 and 4,
2 and 5, 3 and 6) are set as the periodic condition with
the Floquet periodicity (figure B1(b)). We sweep the
wave vector along the first Brillouin zone boundary
(i.e. ΓK′MΓKMΓ) to calculate the bulk band structure
(figure B1(c)).

The simulated structure of one-way propagation of bulk
states in figure 2 is shown in figure B2(a) in which the
magnetic PCs are marked in blue. One section of the upper
boundary (marked in red) is set as scattering boundary condi-
tion with a nonzero amplitude as the incident source
(figure B2(b)). The remaining outmost boundaries (marked in
blue) are set as scattering boundary with zero amplitude to
guide electromagnetic waves.

The edge state band dispersions shown in figure 4 were
obtained using a supercell with height of a20 3 . The scattering
boundary condition was applied along the y-direction and the
periodic boundary condition was applied along the x-direction.

Figure B2. (a) Schematic of the simulated structure for one-way propagation of bulk states presented in figure 2. Here the magnetic PC is
marked in blue. (b) The scattering boundary condition is applied on the outmost boundary in which the source is marked in red.

Figure B1. (a) Schematic of the unit cell of the honeycomb PC. (b) The settings of three pairs of periodic boundaries. (c) Schematic of the
first Brillouin zone.
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