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Abstract: Although parity-time (PT)-symmetric systems 
can exhibit real spectra in the exact PT-symmetry regime, 
PT-symmetry is actually not a necessary condition for the 
real spectra. Here, we show that non-PT-symmetric pho-
tonic crystals (PCs) carrying Dirac-like cone dispersions 
can always exhibit real spectra as long as the average non-
Hermiticity strength within the unit cell for the eigenstates 
is zero. By building a non-Hermitian Hamiltonian model, 
we find that the real spectra of the non-PT-symmetric sys-
tem can be explained using the concept of pseudo-Her-
miticity. We demonstrate using effective medium theories 
that, in the long-wavelength limit, such non-PT-sym-
metric PCs behave like the so-called complex conjugate 
medium (CCM) whose refractive index is real but whose 
permittivity and permeability are complex numbers. The 
real refractive index for this effective CCM is guaranteed 
by the real spectrum of the PCs, and the complex permit-
tivity and permeability come from non-PT-symmetric loss-
gain distributions. We show some interesting phenomena 
associated with CCM, such as the lasing effect.

Keywords: non-Hermitian photonic crystals; pseudo-Her-
miticity; effective medium theory; laser.

1   Introduction

Hermitian Hamiltonian can describe ideal closed  physical 
systems, in which the total energy is conserved and eigen-
frequencies are purely real. However, nonconservative 
elements are ubiquitous in classical wave systems, and 
we need to introduce the concept of non-Hermiticity to 
describe such systems. In the past decades, there is a 
surge of interest in studying the physics of non-Hermitian 
systems [1–7] and the parity-time (PT)-symmetric system, 
which was first introduced in quantum mechanics [1], is 
the most popular one. A Hamiltonian H is said to be PT-
symmetric if [H, PT] = 0, where the operator P represents 
a space reflection and the operator T represents a time 
reversal. PT-symmetric systems have been realized in 
optics and photonics [8–10]. In an optical system, the loss-
gain (represented by the imaginary part of the refractive 
index) distribution is PT-symmetric if the complex-valued 
refractive index satisfies n(x) = n*(−x).

The most intriguing property of a PT-symmetric Ham-
iltonian is that it can exhibit real spectra in the exact PT-
symmetry regime [2]. As we change the parameters of the 
Hamiltonian, such as the loss-gain strength, it may go into 
the broken PT-symmetry regime, and the eigenvalues form 
complex conjugate pairs. The symmetry-breaking point, 
marking the phase transition in the eigenvalue spectrum, 
is the exceptional point (EP) [11, 12]. However, PT-symme-
try is not a necessary condition for achieving a real spec-
trum [13] and some studies about realizing real spectra in 
non-PT-symmetric systems have been presented recently 
[14–18]. It has been proven that the necessary condition 
for the real spectrum is pseudo-Hermiticity [13]. A Ham-
iltonian H satisfying ηHη−1 = H†, where η is an invertible 
linear Hermitian operator, is defined as pseudo-Hermitian 
Hamiltonian (see Supplementary Note 1 for details). Real 
spectra realized in non-PT-symmetric systems can be 
explained using the concept of pseudo-Hermiticity.

Achieving the real spectra in a non-PT-symmetric 
photonic crystals (PC) is highly desirable as, from an effec-
tive medium (EM) theory (EMT) point of view [19], realiz-
ing the real spectra in certain regions of the Brillouin zone 
can lead to new applications. For example, one can then 
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realize a complex conjugate medium (CCM) [20–22], which 
carries many unusual phenomena, including coherent 
perfect absorption and lasing [23], and negative refrac-
tion [24]. The refractive index of CCM is a real number, but 
the permittivity and permeability can both be complex 
numbers in general [20]. From the EMT point of view, 
achieving a CCM using a PC requires the non-Hermitian 
PC to exhibit real frequency bands near the Brillouin zone 
center (Γ point) as the effective refractive index is real.

To understand the underlying physics, we build a 
two-band non-Hermitian Hamiltonian model for non-PT-
symmetric PCs. We show that the model Hamiltonian is 
pseudo-Hermitian as long as the average non-Hermiticity 
strength (to be defined below) within the unit cell for the 
relevant states is zero and this condition can always be 
achieved in PCs that have Dirac-like cone dispersions. 
Consequently, real spectra can be realized in a particu-
lar frequency range, implying that the effective refractive 
index is real. In the long-wavelength limit, the scattering 
properties of such an inhomogeneous PC behave indeed 
like a homogeneous CCM.

2   Two-band non-Hermitian 
Hamiltonian model

As shown in Figure 1A (inset), we consider a two-dimen-
sional (2D) PC with rods arranged in a square lattice in 
the x − y plane. Within the unit cell with a lattice constant 
a, the rod (domain A, the blue region) having a radius rc 
and relative permittivity εA = εcr + iγ is embedded in a back-
ground medium (domain B, the gray region) with relative 
permittivity εB = εbr + iℓrγ. We set εbr = 1 in the calculation 
and the relative permeability μ of both media as 1.0. The 
positive (negative) sign of γ indicates that the rod consists 
of a lossy (active) medium. A positive sign of ℓr indicates 
that the rod and background are either both lossy or both 
active, whereas a negative sign means that one is lossy 
and the other is active.

We study the PC in the transverse-magnetic polari-
zation, where electric field ˆEz=E  is normal to the x − y 
plane, and electromagnetic waves propagate in the plane. 
As shown in Figure 1A, in the Hermitian limit (γ = 0), this 
system has a Dirac-like cone dispersion [25] at the Brillouin 
zone center induced by accidental degeneracy. Compared 
to the Dirac cone of graphene system at the Brillouin 
zone corner, there is an additional flat band in the Dirac-
like cone. It has been experimentally confirmed that the 
radiation existing in an open system can spawn rings of 
EPs in the wave vector space k = (kx, ky) out of Dirac-like 

cones [26], but imaginary parts of the eigenfrequencies 
are negative because of radiation loss. Now, we will see 
whether we can tune the bands outside the ring to become 
real spectra by adding gain into the system. In principle, 
the eigenfrequency and eigenfunction of Bloch states for 
this non-Hermitian 2D PC can be obtained by numerically 
solving the Helmholtz equation [27]. However, to study the 

0.555

A

B

C

M X

εA2rC

a

εB

0.540

0.525

y

x

1.0

0.5

0.0

0.05

0.00
ky M

kx
XΓ

Γ

τ m

–0.05

0.05 0.00

m = –

m = +

m = –
Ω = A

ε Ω
 F

Ω
,m

m
 (k

)
ω

a/
2π

c

Ω = B

m = f

m = +

|k|a/2π

0.05

Figure 1: Properties of the Dirac-like cone.
(A) Band dispersions of Hermitian PC (γ = 0) calculated using 
COMSOL. (B) Eigenmode profiles of top band m = + (even mode), 
flat band m = f (odd mode), and bottom band m = − (even mode). 
(C) Average non-Hermiticity τm when gain-to-loss ratio ℓr = −0.15235. 
The vertical dashed line denotes the intersection: FΩ,++ = FΩ,−−. 
(A, inset) Schematic of 2D PC constructed with cylinders (the blue 
areas); the gray area denotes air. (C, inset) First Brillouin zone of the 
square lattice. The parameters used are rc = 0.1999a, εA = 12.5 + iγ, 
and εB = 1 + iγℓr.
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band structure of the non-Hermitian PC analytically, we 
construct a model Hamiltonian using Hermitian system’s 
Bloch states obtained at a fixed value of k as the bases 
and obtain a generalized eigenvalue problem as (see Sup-
plementary Note 3 for details) [28].

 
2

2 1( / ) ,n n nH p c H pω= ⋅k k k  (1)

where c is the speed of light and ωkn and pkn are the 
eigenfrequencies and eigenvectors of the non-Her-
mitian system (γ ≠ 0), respectively. The matrices in 
Equation (1) are 1 , ,( ) ( )mm mm A mm r B mmH i F Fδ γ′ ′ ′ ′= + + �  and 

(0) 2
2( ) ( / ) .mm mm kmH cδ ω′ ′=  (0)

kmω  is the eigenfrequency of the 
Hermitian PC. To characterize the eigenmode profiles, we 
introduce a quantity

 

2 (0)* (0)
, d ( ) ( ),mm m mF ru u

Ω
Ω

′ ′= ∫ k kr r  (2)

where Ω denotes the rod (|r | < rc) or air (|r | > rc) domain. 
FΩ,mm′ (m ≠ m′) expresses the overlapping between two dif-
ferent eigenmodes in the domain Ω, and FΩ,mm expresses 
the amplitude distribution of the eigenmode m in the 
domain Ω. (0)( )muk r  is the eigenvector of the Hermitian PC 
(γ = 0) and satisfies the orthonormal relation

 , , ,A A mm B B mm mmF Fε ε δ′ ′ ′+ =  (3)

where εA = εcr denotes the relative permittivity of the rod 
domain and εB = εbr = 1 represents the relative permittiv-
ity of the air domain. For convenience, we can omit the 
subscript k for simplicity and rewrite Equation (1) as 
H · pn = Wnpn, where Wn = (ωn/c)2 and 1

1 2 .H H H−= ⋅
From Equation (2), we know that the function FΩ,mm′ 

involves the spatial integrations of eigenfunctions of Her-
mitian systems; hence, the symmetry of the eigenmode 
profile plays an important role here. In our system, we 
choose the center of the rod as origin. The even/odd sym-
metry characters are labeled in Figure 1A [27, 29]. As the 
two linearly dispersive bands (m = ±) are even, whereas 
the flat band (m = f) is an odd mode, the matrix elements 
FΩ,+f and FΩ,−f are all zero, implying that there is no cou-
pling between the flat band and the linear bands. There-
fore, we can decouple the flat band from the Hamiltonian 
model and write the Hamiltonian as a 2 × 2  matrix (see 
Supplementary Note 3 for details):

 

(0) (0)

* (0) (0)

(1 )1 ,
(1 )

W i i W
H

i W W i
γτ γκ

β γκ γτ
− − +

− + +

 + −
=  − + 

 (4)

where 2 21 ( ) (| | ).iβ γ τ τ γ κ τ τ− + − += + + + −  In Equation (4),

 , , ,   ( = )m A mm r B mmF F mτ = + ±�  (5)

is a real number, representing the average non-Hermitic-
ity of state m within the primitive unit cell, and

 , , ,A r BF Fκ −+ +−= + �  (6)

is a complex number, representing an overlapping 
between the two eigenmodes. According to Equation (5), 
the values of τ± depend not only on the distributions of 
non-Hermiticity (described by ℓr) in the unit cell but also 
on the eigenmode profiles (as described by FΩ,mm). The 
average non-Hermiticity τ± is very important, as it can 
determine whether we can obtain the real spectra in a 
non-Hermitian PC (see Supplementary Note 4). To see 
this, we set the average non-Hermiticity τ± = 0; then, the 
Hamiltonian (4) becomes

 

(0) (0)

* (0) (0)
1 ,

W i W
H

i W W
γκ

β γκ
− +

− +

 −
=  − 

 (7)

where β = 1 + γ2 | κ | 2 is a real number.
Near the Γ point, we can expand the eigenfrequencies 

of the two linear bands for a small k ≡ | k |  into

 
(0) 2( / / ) ,d g d gW c v k c W C kω± = ± ≈ ±  (8)

where Cg = 2ωdvg/c2, Wd = (ωd/c)2, and ωd is the Dirac-like 
point frequency. The band slope vg can be obtained from 
numerical results in Figure 1A, where we assume vg is a 
constant along all directions in the wave vector space, 
which is an excellent approximation of a conical disper-
sion at k = 0 for a system with C4v symmetry [29]. The cor-
responding eigenvalues are

 
( )2 2 2 2 2 21 ( ) (1 | | ) | | .d g dW W C k Wγ κ γ κ

β± = ± + −  (9)

EPs appear when the value under the square root is 
zero and form a ring in the wave vector space with a radius 

1
2 2(1 | | ) ,c b bk k kγκ

−−= + ≤  where kb = ωd/2vg is the upper 
bound of the ring’s radius. This means that the radius of 
the EP ring in k space cannot exceed kb for any value of 
γ. In general, |κ|  is a small number, and the radius of the 
ring can be reduced to kc≈ kb | γκ |. The eigenvalues are real 
outside the ring (k > kc) and form complex conjugate pairs 
inside the ring (k < kc). Therefore, by setting the average 
non-Hermiticity τ± = 0, we can obtain a real spectrum in 
a certain region (Supplementary Figure S1b gives a sche-
matic of the band dispersions).

Before proceeding to the next subsection, the Hamilto-
nian (7) deserves more comments. Using the linear operator

 
0

,
0
W

W
η −

+

 
=  − 

 (10)
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the Hamiltonian (7) satisfies

 
1 †( ) ( ) ( ),H H Hη γ η γ γ− = = −  (11)

Implying that the Hamiltonian is pseudo-Hermitian and 
the operator η transforms the system with non-Hermiticity 
γ into its complex conjugate-paired system −γ. Unlike the 
traditional PT-symmetric system, the loss-gain distribu-
tion of our PC system is not PT-symmetric in real space, 
n(x) ≠ n*(−x).

3   Results

3.1   Realizing the pseudo-Hermitian 
condition using a Dirac-like cone

The previous section shows that, by setting the average 
non-Hermiticity τ± = 0, the non-Hermitian Hamilto-
nian will become pseudo-Hermitian, and we can obtain 
the real spectra. For a PT-symmetric PC, τ± = 0 is auto-
matically satisfied as the distributions of loss and gain 
within the unit cell are equal (see Supplementary Note 
2 for details) [30]. However, for a non-PT-symmetric PC, 
achieving τ± = 0 is not an easy task. Now, we will show 
that, for a PC exhibiting a Dirac-like cone in the Brillouin 
zone center, we can always achieve the pseudo-Hermitian 
condition τ± = 0.

The eigenmode (0)( )u ±k r  in the quantity FΩ,mm′ depends 
on the structural details (such as the filling ratio rc and 
the contrast between εA and εB) of the PC and can be 
computed numerically using COMSOL. Substituting the 
orthonormal relationship Equation (3) into the pseudo-
Hermitian criteria τ± = 0, we solve a specific value of the 
loss-gain ratio ℓr

 

, ,

, ,

,
1

A mm A mm B
r

B mm A mm A

F F
F F

ε

ε

− −
= =

−
�  (12)

for both m = + and m = −. Equation (12) shows that, to 
determine the value of ℓr, we must tune the system para-
meters so that the system satisfies FΩ,++ = FΩ,−−.

The band dispersions near the Dirac-like cone are 
shown in Figure 1A, and the quantities εΩFΩ,mm of the three 
bands are plotted in Figure 1B. We can see that there is 
an intersection (FΩ,++ = FΩ,−−) at kxa/2π = 0.019 (marked by 
the dashed line), and then Equation (12) can be used to 
determine the gain-to-loss ratio, which is found to be 
ℓr = −0.15235. Physically, the existence of such an intersec-
tion is guaranteed by the band inversion in the Dirac-like 

cone [25]. The condition FΩ,++ = FΩ,−− can always be achieved 
near the Dirac-like cone (see Supplementary Note 6 and 
Supplementary Figure S1 for details); therefore, τ± = 0 is 
realized at kxa/2π = 0.019 as shown in Figure 1C. Note that 
the quantity FΩ,mm should be a function of k, but near the 
Dirac-like cone (except the Γ point), this quantity is almost 
a constant (as shown in Figure 1B), as the eigenmodes of 
the same point group are almost unchanged when the 
change of k is small. We can therefore assume that the 
values τm, and κ are independent of k in the considered 
Brillouin zone region. As shown in Figure 1C, by tuning 
ℓr = −0.15235, we can obtain τ± ≈ 0 near the Dirac-like cone 
(except very close to the Γ point, where τ−≈ −τ+). We can 
demonstrate that the pseudo-Hermitian condition at the Γ 
point is τ− = −τ+, which is less demanding than other points, 
as the symmetry at the Γ point is higher than that at other 
k points (see Supplementary Note 5 for details). Therefore, 
the pseudo-Hermitian criterion is approximately fulfilled 
for all the k points near the Dirac-like cone.

Now, we can calculate the band structures of a PC 
with loss-gain ratio ℓr = −0.15235 to verify the validity 
of the pseudo-Hermitian Hamiltonian shown in Equa-
tion (7). We choose a non-Hermitian strength γ = +0.367 
and plot the complex band structure along the M − Γ − X 
direction in Figure 2A and B. The analytical results are 
shown by solid green lines, and the numerically results 
are calculated using COMSOL by open circles. The valid-
ity of our non-Hermitian Hamiltonian model is demon-
strated by the good agreement between the two sets of 
results. We can see that EPs appear in both Γ − X and 
Γ − M directions. To show that these EPs form a ring in 
k space, we plot the three-dimensional complex band 
structure in Figure 2C and D using Equation (9) and 
COMSOL as shown by green surfaces (analytical results) 
and filled dots (numerical results), respectively. The ana-
lytical model (9) predicts that k = kc = 0.019(2π/a) form 
a ring of EPs, which is verified by COMSOL results. The 
eigenfrequencies inside the ring form complex-conjugate 
pairs, and outside the ring, we obtain the entirely real 
spectra.

However, entirely real spectra do not mean loss-gain 
compensation. To see this, we compare the system with 
non-Hermiticity γ+ = +0.367  with its complex conjugate-
paired system γ− = −0.367. If we replace γ+ by γ−, the eigen-
frequencies described by Equation (9) are the same, but 
the Hamiltonians (7) are different as described by Equa-
tion (11). In other words, these two systems (γ+ and γ−) 
possess the same band dispersion, but the eigenfunc-
tions are different (see Supplementary Note 7 for details); 
hence, they can display different scattering behaviors, as 
we will show later.
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3.2   Real spectra and CCM

The optical properties of an Hermitian PC carrying a Dirac-
like cone in the Brillouin zone center can be described 
using an effective refractive index medium in which the 
effective permittivity and permeability are simultaneously 
zero at the Dirac-like point frequency. We have shown in 
the previous subsection that, by setting the average non-
Hermiticity as zero, the spectra are real outside the ring 
of the EPs. It is interesting to see what type of EM corre-
sponds to the non-PT-symmetric PC with real spectra. In 
this section, we will establish the EMT of non-Hermitian 
PC for describing the physics near the Γ point and study 
the related scattering properties.

We calculate the effective parameters using a bound-
ary field averaging method [31]. Assuming that the 
wave ˆk kx=  propagates along the x direction, we define 
Z = Ez/Hy = −ωμ/k = −k/(ωε) for a plane wave traveling in 
a homogeneous medium to express the ratio between the 
electric fields and the magnetic fields. For the inhomoge-
neous PC system, the average field ratio is defined as

 
P

P I
P

I

,
C

zC
C

y

E dy
Z

H dy
= ∫

∫
 (13)

where EPC and HPC are obtained from the eigenfields at the 
incident boundary I (the boundary of the unit cell along y 
direction). When we calculate effective parameters of the 
non-Hermitian PC as functions of frequency, the frequen-
cies should take real-valued numbers, as in actual experi-
ments the incident light comes with a real frequency. 
Therefore, within the PC, the eigenfields EPC and HPC are 
obtained by solving the “complex-valued k(ω) vs. real-val-
ued ω” band structures [32]. In Figure 3A, we plot the “com-
plex-valued k(ω)” band structure of the non-Hermitian 2D 
PC calculated using COMSOL. We note that the imaginary 
parts of the bands (red lines) are almost zero, and for real 
bands, the “complex-valued k(ω)” band structure should 
agree well with the “complex-valued ω(k) vs. real-valued k” 
band structure (see Supplementary Figure S7 for details). In 
Figure 3B, we plot ZPC defined in Equation (13) for the bands 
with positive (dashed lines) and negative (solid lines) wave 
vectors, respectively, in Figure 3A. The effective permittivity 
and permeability can be calculated as follows:

 

PC
e ePC

00

,   .k k Z
Z

ε μ
μ ωωε

− −= =  (14)

We plot the real and imaginary parts of εe(μe) by squares 
(stars) in Figure 3C and D, respectively. Note that the 
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Figure 2: Band dispersions of pseudo-Hermitian bands.
The real parts (A and C) and the imaginary parts (B and D) of the complex eigenfrequencies along the M − Γ − X direction and in the 2D Bloch 
k space. Open circles and solid dots are calculated using COMSOL, whereas green solid lines and green surfaces are calculated using the 
analytical model (vg = 0.295c and |κ| 2 = 0.00318). The bands outside the ring are entirely real. The parameters of 2D PC are rc = 0.1999a, 
εA = 12.5 + iγ, εB = 1 + iγℓr, γ = +0.367, and ℓr = −0.15235.
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effective parameters obtained from the two bands (k and 
-k) are the same.

It is known that, for the Hermitian case, the effec-
tive parameters of the PC are real and approach zero 
near the Dirac-like point frequency, indicating that the 
PC can be treated as a zero refractive index medium [25]. 
When we introduce loss and gain into the PC, the effec-
tive parameters εe and μe obtain imaginary parts as shown 
in Figure  3D. However, we note that the effective refrac-
tive index ne2 = εeμe = (k/k0)2 is a real number, where k0 is 
the wave vector in air. This automatically indicates that 
the inhomogeneous PCs behave like the homogeneous 
CCM whose refractive index is real but whose permittivity 
and permeability are complex numbers. The real effective 
refractive index does not necessarily imply a simple loss-
gain compensation, as εe and μe have imaginary parts. 
Also, it can be proven that ( ) ( )*

e e
γ γε ε+ −=  and ( ) ( )*

e e
γ γμ μ+ −=  (see 

Supplementary Note 8 for details).
The complex conjugate-paired systems (γ+ and γ−) have 

dramatically different effects on the scattering properties 
of electromagnetic waves. To demonstrate this, we con-
sider a slab with thickness d formed by the homogeneous 
EM with the parameters εe and μe, as shown in Figure 4A. 

We assume that plane waves propagate along the x direc-
tion with an electric field polarized along the z direction 
and that the EM slab (blue region) is embedded in air (gray 
region). The electric field in the air can be written as E(x) =  
a1exp(ik0x) + b1exp(−ik0x) for x < −d/2 and as E(x) = b2exp(i
k0x) + a2exp(−ik0x) for x > d/2. The amplitudes of incoming-
propagating waves (a1, a2)T and outcoming-propagating 
waves (b2, b1)T are related by a scattering matrix [23].

 

12

1222

11 ,
1

t r M
S

r t MM
   

= =   
   

 (15)

where r and t represent the transmission and reflection 
coefficients of the slab for normal incident plane waves. 
The elements in S are
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where k = k0ne is the wave vector in the slab. The corre-
sponding eigenvalues of the S matrix are
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wave vectors are represented by dashed and solid lines, respectively. The real (green) and imaginary (red) parts of the effective parameters 
εe and μe are plotted in squares and stars, respectively (C and D).



X. Cui et al.: Realization of complex conjugate media using non-PT-symmetric photonic crystals      201

 
12

22
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M

λ± = ±  (18)

These eigenvalues can be used to determine the S 
matrix poles (1/Max | λ ± | → 0) where lasing occurs. For a 
slab composed of CCM [Im(ne) = Im(k/k0) = 0], kd is a real 
number. For the S matrix to have poles, we require M22 = 0; 
therefore, we obtain

 

2 2
e e

e e

2 cot( ).
n

i kd
n

μ

μ

+
= −  (19)

To satisfy Equation (19), μe must be an imaginary 
number. Figure 3C and D shows the effective para-
meters of PCs with non-Hermiticity γ+ = +0.367. We find 

( )
e[ ] 0Re
γμ + =  at ωa/2πc = 0.5416, and we can solve  Equation 

(19) to obtain the slab thickness d/a = 17.4. For PCs with 
non- Hermiticity γ− = −0.367, the effective parameters are 

( ) ( )*
e e
γ γε ε+ −=  and ( ) ( )*

e e ,γ γμ μ+ −=  and we can solve the slab 
thickness d/a = 8.9.

Figure 4C and E shows the contour plots of 1/Max | λ±|  
in the (ωa/2πc, d/a) plane for EM slab with ( ) ( )

e e( , )γ γε μ+ +  
and ( ) ( )

e e( , )γ γε μ− −  respectively. To verify the scattering poles 
(1/Max | λ±| → 0), in Figure 4B, we plot the transmission 
T = | t | 2 and reflection R = | r | 2 of slabs formed by homo-
geneous EM by squares and PCs by solid lines. The sche-
matic of the one-dimensional scattering problem of slab 
formed by PCs is plotted in Figure 4B. We set the thickness 
of the slab d/a = 17, as the thickness of the slab formed by 

Figure 4: Scattering properties of CCM with effective parameters as shown in Figure 3.
Schematics of wave scattering in (A) EM slab and (B) PC slab. The contour plot of the value 1/Max | λ ±| in the (ω, d) plane for EM slab with 
parameters (C) γε +( )

e , γμ +( )
e  and (E) γε −( )

e , γμ −( )
e . Black and red solid lines represent the reflection R and transmission T for PC slab and black and 

red squares represent EM slab, respectively. The non-Hermiticity strength of PCs is (D) γ+ = +0.367 and (F) γ− = −0.367. Slab thicknesses are 
d/a = 17 in (B) and d/a = 9 in (D).
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PCs must be an integer. The good agreement between the 
EM and PCs results shows that the effective parameters 
shown in Figure 3C and D essentially reproduce the 
physics. We can see that the system indeed has the trans-
mission and reflection singularities at ωa/2πc = 0.5416 in 
Figure 4D. This indicates that we can observe the poles of 
the S matrix from the transport configuration. Similarly, 
the pole in Figure 4E at d/a = 8.9 and ωa/2πc = 0.5416 for 

( ) ( )
e e( , )γ γε μ− −  is also verified by the transmission and reflec-

tion singularities in Figure 4F, where d/a = 9. When we 
change the sign of γ, the real bands of the PCs remain 
almost the same, but the non-Hermitian PCs do not have 
time reversal symmetry. Although the refractive index 
satisfies ( ) ( )

e e ,n nγ γ+ −≈  the scattering phenomena change 
drastically as the effective permeability (or impedance) 
has imaginary parts, and ( ) ( )

e e .γ γμ μ+ −≠  This illustrates that 
the S matrix poles depend not only on the refractive index 
but also on the permeability as shown in Equation (19). 
The sum of the transmission and reflection is not equal 
to unity, although the effective refractive index of the slab 
is real. A real refractive index does not necessarily imply 
energy compensation. The focusing effect of our PCs as a 
lens is also different for these complex paired systems (see 
Supplementary Note 9 for details).

4   Discussion
In this work, we find that a non-PT-symmetric PC can 
have real spectra when the average non-Hermiticity 
within the unit cell is zero. We showed that the pseudo-
Hermitian condition (τ± = 0) can always be fulfilled in 
two-component PCs carrying Dirac-like cones with bands 
arising from monopolar and dipolar resonances. These 
non-Hermitian PCs carrying Dirac-like cones can be used 
to realize CCM near the Dirac-like point frequency, where 
a real spectrum guarantees a real refractive index and 
the non-Hermiticity guarantees complex permittivity and 
permeability.
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